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Abstract

In this paper, we propose two iterative methods, a Jacobi-type iteration (JI) and a Gauss–Seidel-type iteration (GSI),

for the computation of energy states of the time-independent vector Gross–Pitaevskii equation (VGPE) which describes

a multi-component Bose–Einstein condensate (BEC). A discretization of the VGPE leads to a nonlinear algebraic eigen-

value problem (NAEP). We prove that the GSI method converges locally and linearly to a solution of the NAEP if and

only if the associated minimized energy functional problem has a strictly local minimum. The GSI method can thus be

used to compute ground states and positive bound states, as well as the corresponding energies of a multi-component

BEC. Numerical experience shows that the GSI converges much faster than JI and converges globally within 10–20

steps.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study numerically time-independent, coupled nonlinear Schrödinger equations, also

called a vector Gross–Pitaevskii equation (VGPE), for the steady energy states which describe a mul-

ti(m)-component Bose–Einstein condensate (BEC) in m different hyperfine spin states at zero or very low
temperature. Generically, the ultracold dilute Bose gas, two different hyperfine spin states may repel each

other and form separate domains like the mixture of oil and water. Such a phenomenon called the phase
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separation of a binary mixture of BEC has been extensively investigated by experimental and theoretical

physicists [13,21,26,31]. A large repulsive interactive scattering length may cause spontaneous symmetry

bifurcation which induces the phase separation [2,16]. Furthermore, due to Feshbach resonance, a positive

and large interactive scattering length can be obtained by adjusting the externally applied magnetic field

[20].
As for the study of numerical computation, based on the schemes of [4,5,7,8], Bao [3] recently developed

an elegant normalized gradient flow (NGF), monotone scheme and a time-splitting sine-spectral (TSSP)

method for computing ground states of a multi-component BEC by solving the time-dependent VGPE.

The NGF method was proven to preserve energy diminishing property in linear case [3,4]. The TSSP is ex-

plicit, unconditionally stable, time reversible and time transverse invariant if the VGPE has good resolution

in the semiclassical regime, and it has a spectral order accuracy in space and second-order accuracy in time

[3]. Recently, a continuation BSOR Lanczos–Galerkin method [12] for computing positive bound states of

a multi-component BEC is developed by solving the time-independent VGPE. Furthermore, only a few
numerical simulations on a multi-component BEC [14,18,22] have been studied.

The main purpose of this paper is first to discretize the time-independent VGPE into a nonlinear alge-

braic eigenvalue problem (NAEP) and derive a discretized version of the associated minimized energy

functional problem. Second, for the computation of the desired energy states of a multi-component

BEC, we propose a Jacobi-type iteration (JI) and a Gauss–Seidel-type iteration (GSI) by solving m linear

eigenvalue problems in each iterative step, and prove that the GSI method converges locally and linearly

to a fixed point if and only if the associated minimized energy functional problem has a strictly local

minimum at the feasible fixed point. Third, we utilize the GSI to compute the bifurcation diagram of
eigen-states of the NAEP and the corresponding energies of the time-independent VGPE. From both the-

oretical and computational points of view, our proposed iterative methods are distinct from the NGF

and TSSP methods in that ours are inspired by the eigenvalue problem approach for computing the

ground states and the other positive bound states of a multi-component BEC. Furthermore, our methods

can be combined with the continuation BSOR Lanczos–Galerkin method [12] for solving the time-

independent VGPE efficiently.

This paper is organized as follows. In Section 2, we introduce the VGPE and the corresponding nonlin-

ear eigenvalue problem. In Section 3, we derive a discretized version of the VGPE, called NAEP, and the
associated minimized energy functional problem, respectively. In Section 4, we propose JI and GSI meth-

ods for solving the NAEP, and prove necessary and sufficient conditions for the convergence of the JI and

GSI methods. Numerical results for ground states and positive bound states of two/three-component BECs

by solving the NAEP are presented in Section 5. Finally, a conclusion remark is given in Section 6.

Throughout this paper, we use the bold face letters or symbols to denote a matrix or a vector. For

u ¼ ðu1; . . . ; uN ÞT; v ¼ ðv1; . . . ; vN ÞT 2 RN ; u � v ¼ ðu1v1; . . . ; uNvN ÞT denotes the Hadamard product of u

and v, = u � � � � � u denotes the r-time Hadamard product of u, sub: = diag(u) denotes the diagonal

matrix of u, and uH denotes the conjugate transpose of u. For A 2 RM�N , A > 0 (P 0) denotes a positive
(non-negative) matrix with positive (non-negative) entries, A 0 (with AT = A) denotes a symmetric positive

definite matrix, r(A) and q(A) denote the spectrum and the spectral radius of A, respectively.
2. VGPE and nonlinear eigenvalue problem (NEP)

It is well known that the VGPE can be used to describe the evolution of the macroscopic wavefunctions

of a multi-component BEC [19,27]. In order to extract essential parameters in the original VGPE, a dimen-
sionless VGPE has been derived in [3] (see [3] for details). In this paper, we consider the dimensionless

VGPE on a d-dimensional ellipsoid D ¼ fx 2 Rd : kCxk2 6 1;C ¼ diagð½c1; . . . ; cd �
TÞ > 0g of the form:



S.-M. Chang et al. / Journal of Computational Physics 202 (2005) 367–390 369
i
owðx; tÞ

ot
¼ � 1

2
r2wðx; tÞ þ VðxÞ � wðx; tÞ þ BðwÞ � wðx; tÞ; x 2 D; t > 0; i ¼

ffiffiffiffiffiffiffi
�1
p

; ð2:1aÞ

wðx; tÞ ¼ 0; x 2 oD; ð2:1bÞ

where
wðx; tÞ ¼ ðw1ðx; tÞ; . . . ;wmðx; tÞÞ
T
;

VðxÞ ¼ ðV 1ðxÞ; . . . ; V mðxÞÞT P 0;

BðwÞ ¼ ðB1ðwÞ; . . . ;BmðwÞÞT;

BjðwÞ ¼ bj1jw1j
2 þ � � � þ bjmjwmj

2
; j ¼ 1; . . . ;m;
in which w(x,t) represents the macroscopic vector wavefunction, V(x) is the harmonic trap potential, and

bjk ¼ b̂jkN
0
k , j,k = 1, . . .,m, with b̂jk ¼ b̂kj > 0 or <0 being the repulsive/attractive interactive scattering

lengths and N 0
k > 0 being the number particles of the kth component. Furthermore, the VGPE of (2.1) con-

serves the normalization of each component of the vector wavefunction, i.e.,
nðwjÞ :¼
Z
D

jwjðx; tÞj
2
dx ¼ 1; j ¼ 1; . . . ;m ð2:2Þ
as well as the energy
EðwÞ ¼
Xm
j¼1

N 0
j

N 0
EjðwÞ; ð2:3Þ
where N 0 ¼ N 0
1 þ � � � þ N 0

m and
EjðwÞ ¼
Z
D

1

2
jrwjj

2 þ V jðxÞjwjj
2 þ 1

2

Xm
k¼1

bjkjwjj
2jwkj

2

" #
dx:
Using the technique of separation of variables for finding the solitary wave solution of (2.1) we let
wðx; tÞ ¼ e�ik
ðcÞt � /ðxÞ; ð2:4Þ
where kðcÞ ¼ ðkðcÞ1 ; . . . ; kðcÞm Þ
T
is referred as the chemical potential vector of the multi-component BEC and /

(x) = (/1(x), . . .,/m(x))
T is a real-valued vector function independent of time. Plugging (2.4) into (2.1a) and

using (2.2) gives a nonlinear eigenvalue problem (NEP), also called Hatree–Fock equations (cf. [16,17]), for

(k(c),/):
kðcÞ � /ðxÞ ¼ �1
2
r2/ðxÞ þ VðxÞ � /ðxÞ þ Bð/Þ � /ðxÞ; x 2 D ð2:5Þ
satisfying the normalization constraints
Z
D

j/jðxÞj
2
dx ¼ 1; j ¼ 1; . . . ;m; ð2:6Þ
where B(/) = (B1(/),. . .,Bm(/))
T with Bjð/Þ ¼

Pm
k¼1bjkj/kj

2
, j = 1, . . .,m.

Let
Eð/Þ ¼
Xm
j¼1

N 0
j

N 0
Ejð/Þ ð2:7Þ



370 S.-M. Chang et al. / Journal of Computational Physics 202 (2005) 367–390
be the energy functional in /, where
Ejð/Þ ¼
Z
D

1

2
jr/jj

2 þ V jðxÞj/jj
2 þ 1

2

Xm
k¼1

bjkj/jj
2j/kj

2

" #
dx ð2:8Þ
for j = 1,. . .,m. Multiplying the jth equation in (2.5) by /j(x), and using (2.6) and (2.8), it is easily seen that

any eigenvalue vector k(c) and the corresponding eigenfunction / of (2.5) satisfy
kðcÞj ¼
Z

D

1

2
jr/jj

2 þ V jðxÞj/jj
2 þ

Xm
k¼1

bjkj/jj
2j/kj

2

" #
dx ¼ Ejð/Þ þ

1

2

Z
D

Xm
k¼1

bjkj/jj
2j/kj

2
dx: ð2:9Þ
On the other hand, from [3] the ground-state solution /g(x) of the multi-component BEC can be found by

minimizing the energy functional E(/) under the conditions (2.6). That is,
Minimize
/¼ð/1;...;/mÞT

Eð/Þ

subject to

Z
D

j/jðxÞj
2
dx ¼ 1; j ¼ 1; . . . ;m:

ð2:10Þ
Eq. (2.5) can be regarded as the Euler–Lagrange equation of the optimization problem (2.10).

In a multi-component BEC without an external driven field, the optimization problem (2.10) has been

proven to have a unique nonnegative ground state solution /g(x) P 0, for x 2 D [25]. From physical point

of view, the computation of the ground state solution (kg,/g) for (2.5), and thus for (2.10), is most impor-

tant for the study of the multi-component BEC. On the other hand, from theoretical and computational
point of view, we are also interested in knowing the behavior of the other positive bound state solutions

for (2.5) (i.e., the critical points of (2.10)), which can possibly be used as an initial for the study of the

dynamics of various multi-component BECs [3,14,18,22].
3. Nonlinear algebraic eigenvalue problem (NAEP)

For computational purpose, in this section we shall derive a discretized version of the nonlinear eigen-
value problem (2.5) and the associated optimization problem (2.10).

For simplicity, we consider Eq. (2.5) on a 2-dimensional unit disk D and rewrite the Laplacian operator

$2 on /j(x) in the polar coordinate system:
�r2/jðxÞ ¼ �
o2

or2
þ 1

r
o

or
þ 1

r2
o2

oh2

� �
/jðr; hÞ; with 06 r6 1; 06 h6 2p; j ¼ 1; . . . ;m: ð3:1Þ
Based on recently proposed, simple and elegant, discretization scheme [23] for (3.1) we let dr = 2/(2m + 1) be

the radial mesh width and dh = 2p/x be the azimuthal mesh width, for positive integers m and x. The grid

locations are then half-integered in radial direction and integered in azimuthal direction, i.e.,
rl1 ¼ ðl1 � 1
2
Þdr; hl2 ¼ ðl2 � 1Þdh ð3:2Þ
for l1 = 1, . . .,m and l2 = 1, . . .,x.
Now, let N = mx and define l ” l(l1, l2) = l1 + m(l2 � 1): 1 6 l 6 N. Then the standard central finite differ-

ence method discretizes (3.1) into
bAuj ¼ bA½uj1; . . . ; ujl; . . . ; ujN �T; bA 2 RN�N ; ð3:3Þ

where uj is an approximation of the jth wavefunction /j(x) with ujl � /jðrl1 ; hl2Þ, for l ” l1 + m(l2 � 1),

j = 1, . . .,m, bA and bAT
are irreducible and diagonal-dominant with positive diagonal and non-positive
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off-diagonal elements, respectively. Moreover, bA is symmetrizable to a symmetric positive definite matrix A

by a positive diagonal matrix D > 0 (see Appendix A), i.e.,
bA ¼ D�1AD; AT ¼ A � 0: ð3:4Þ

Note that D ¼ diagðdl1;l2Þ is called a symmetric balancing matrix and
d2
l1;l2
¼ ðl1 � 1

2
Þdr2dh
is equal to the area of the (l1 + m(l2 � 1))th sector corresponding to an integer partition for D by rl1 ¼ l1dr
and hl2 ¼ ðl2 � 1Þdh, for l1 = 1, . . .,m, l2 = 1, . . .,x. For the case of 3-dimensional unit ball D, similarbA and bAT

as in (3.3) can also be constructed (see [24], for details).

Applying (3.3) to (2.5) and normalizing each uj with respect D2, the discretization of NEP in (2.5), re-

ferred as a nonlinear algebraic eigenvalue problem (NAEP), can be formulated as follows:
1

2
bAuj þ Vj � uj þ

Xm
k¼1

bjkuk � uj ¼ kðcÞj uj; ð3:5Þ

uTj D
2uj ¼ 1; j ¼ 1; . . . ;m;
where Vj = [Vj1,. . .,VjN]
T, with V jl ¼ V jðrl1 ; hl2Þ, for l ” l1 + m(l2 � 1) and 1 6 l 6 N.

Let u ¼ ðuT1 ; . . . ; uTmÞ
T
. Since the jth kinetic energy

R
D

1
2
jr/jj

2
dx in (2.8) is equal to �

R
D
/jðr2/jÞdx,

from (3.4) we approximate it by
1
2
uTj D

2 bAuj ¼ 1
2
uTj DADuj: ð3:6Þ
Furthermore, the jth potential energy between the nonlinear terms uk (k = 1,. . .,m) and uj as well as uj and

Vj are with respect to D2. Then the discretized equation of the jth energy Ej(/) in (2.8) becomes
EjðuÞ ¼
1

2
uTj DADuj þ VT

j ðDujÞ þ
1

2

Xm
k¼1

bjku
T

k ðDujÞ ; ð3:7Þ
for j = 1, . . .,m. Multiplying (3.5) by uTj D
2, and from (3.4) and (3.7) it is easy to verify that any eigenvalue

vector kðcÞ ¼ ðkðcÞ1 ; . . . ; kðcÞm Þ
T
and the associated eigenvectors u ¼ ðuT1 ; . . . ; uTmÞ

T
of (3.5) satisfy the equations
kðcÞj ¼
1

2
uTj DADuj þ VT

j ðDujÞ þ
Xm
k¼1

bjku
T

k ðDujÞ ¼ EjðuÞ þ
1

2

Xm
k¼1

bjku
T

k ðDujÞ ; j ¼ 1; . . . ;m:

ð3:8Þ

From (2.7) follows that,
EðuÞ ¼
Xm
j¼1

N 0
j

N 0
EjðuÞ ¼

Xm
j¼1

N 0
j

N 0
kðcÞj �

1

2

Xm
k¼1

bjku
T

k ðDujÞ
 !

: ð3:9Þ
Furthermore, from (3.7) and (3.9) we have
EðuÞ ¼
Xm
j¼1

N 0
j

N 0
EjðuÞ

¼ 1

2

Xm
j¼1

N 0
j

N 0
uTj DADuj þ

Xm
j¼1

N 0
j

N 0
VT

j ðDujÞ þ
1

2

Xm
j¼1

N 0
j

N 0
bjju

T
j ðDujÞ

þ 1

2

Xm
j¼1

X
j 6¼k

N 0
j

N 0
bjku

T
k ðDujÞ : ð3:10Þ



372 S.-M. Chang et al. / Journal of Computational Physics 202 (2005) 367–390
The discretization of the optimization problem (2.10) becomes
Minimize
u¼ðuT

1
;...;uTmÞT

EðuÞ

subject to uTj D
2uj ¼ 1; j ¼ 1; . . . ;m:

ð3:11Þ
Applying the optimality condition [10, Chapter 4] to the problem (3.11), a local minimal solution

ðkðLÞ; uÞ � ððkðLÞ1 ; . . . ; kðLÞm Þ; ðuT1 ; . . . ; uTmÞ
TÞ of (3.11) satisfies the Karush–Kuhn–Tucker (KKT) equations
N 0
j

N 0
Aþ 2sVjtþ 2bjjsuj t
� �

ðDujÞ þ
X
k 6¼j

N 0
j

N 0
bjk þ

N 0
k

N 0
bkj

 !
uk � ðDujÞ ¼ kðLÞj ðDujÞ; ð3:12Þ
for j = 1, . . .,m, where fkðLÞj g
m
j¼1 are referred as Lagrange multipliers. Multiplying (3.12) by N 0=2N 0

j gives
1

2
AðDujÞ þ Vj � ðDujÞ þ

1

2

Xm
k¼1

bjk þ
N 0

k

N 0
j

bkj

 !
uk � ðDujÞ ¼

N 0

2N 0
j

kðLÞj ðDujÞ: ð3:13Þ
Using the assumption that bjk ¼ b̂jkN
0
k and b̂jk ¼ b̂kj, Eq. (3.13) becomes
1

2
AðDujÞ þ Vj � ðDujÞ þ

Xm
k¼1

bjkuk � ðDujÞ ¼
N 0

2N 0
j

kðLÞj ðDujÞ: ð3:14Þ
We see that by (3.4), Eq. (3.14) is equivalent to (3.5) with
kðcÞj ¼
N 0

2N 0
j

kðLÞj ; j ¼ 1; . . . ;m: ð3:15Þ
From (3.8)–(3.10) and (3.15), we have the total energy
EðuÞ ¼
Xm
j¼1

N 0
j

N 0
EjðuÞ ¼

Xm
j¼1

N 0
j

N 0
kðcÞj �

1

2

Xm
k¼1

bjku
T

k ðDujÞ
 !

¼ 1

2

Xm
j¼1

kðLÞj �
1

2

Xm
k¼1

N 0
j

N 0
bjku

T
k ðDujÞ: ð3:16Þ
We now define
Aj :¼ Aþ 2sVjt; kj :¼
N 0

N 0
j

kðLÞj ð3:17Þ
for j = 1, . . .,m. Then the NAEP (3.14), and thus (3.5), becomes
AjðDujÞ þ 2
Xm
k¼1

bjkuk � ðDujÞ ¼ kjðDujÞ; j ¼ 1; . . . ;m ð3:18Þ
and from the fact that bjk
N0

j

N0 ¼ bkj
N0

k
N0, j 6¼ k, the associated optimization problem (3.11) becomes
Minimize
u¼ðuT

1
;...;uTmÞT

EðuÞ

subject to uTj D
2uj ¼ 1; j ¼ 1; . . . ;m;

ð3:19Þ
where
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EðuÞ �
Xm
j¼1

N 0
j

N 0

1

2
uTj DADuj þ VT

j ðDujÞ þ
1

2
bjju

T
j ðDujÞ

� �
þ

X
1	j<k	m

bjk

N 0
j

N 0

 !
u T
k ðDujÞ : ð3:20Þ
Any KKT point ðk; uÞ ¼ ððk1; . . . ; kmÞT; ðuT1 ; . . . ; uTmÞ
TÞ of (3.18) solves a local minimum or a saddle point of

(3.19). In the following sections, we shall develop numerical algorithms for finding the global minimum of

(3.19), i.e., the ground state solution of (2.5).
4. Iterative methods for NAEP

Many numerical algorithms, such as normalized gradient flow (NGF) method [4], the minimizing en-
ergy functional method [9], the imaginary time method [1,15] and the time-splitting spectral (TSSP)

method [6], have been proposed for computing the ground state of (2.5) for a single-component

BEC. Recently, a generalization of the NGF [4] and the TSSP [5,7,8] has been developed in [3] for

computing the ground states of (2.5) for a multi-component BEC. Furthermore, a continuation BSOR

Lanczos–Galerkin method has been proposed by Chang et al. [12] for computing positive bound states

of a multi-component BEC. In this section, we shall propose two iterative methods for finding the

KKT points (k,u) of (3.18), and thus, the ground states or positive bound states of (2.5). These meth-

ods are designed by solving the smallest eigenvalues and the associated eigenvectors of m linear eigen-
value problems at each iterative step.

Define the set
M ¼ fv 2 RN jvTD2v ¼ 1; vP 0g; M
�
¼ interior of M; ð4:1Þ
where D is given by (3.4). From (3.4) and the property that bA in (3.3) is diagonal-dominant with non-pos-

itive off-diagonal entries, we see that ADé0, where e = (1, . . ., 1)T. This implies that for any given Vj P 0
and ðu1; . . . ; umÞ 2 �

m

j¼1
M, the matrix
�Aj � Aj þ 2
Xm
k¼1

sbjkuk t ð4:2Þ
is an irreducible M-matrix, where Aj = A + 2sVjb as in (3.17). Consequently, �A
�1
j P 0 is an irreducible and

non-negative matrix, for j = 1, . . .,m. Consider the equation (3.18) and by Perron–Frobenious Theorem (see

e.g., [11, p. 27]) there is a unique positive eigenvector D�uj > 0 with �uTj D
2�uj ¼ 1 corresponding to the max-

imal eigenvalue lmax
j of �A

�1
j . That is, �uj > 0 is uniquely determined by a given ðu1; . . . ; umÞ 2 �

m

j¼1
M and

satisfies
�AjðD�ujÞ � Aj þ 2
Xm
k¼1

sbjkuk t

 !
ðD�ujÞ ¼ kmin

j ðD�ujÞ; ð4:3Þ
where kmin
j ¼ 1=lmax

j and �uTj D
2�uj ¼ 1, for j = 1, . . .,m.

We now define a function f : �m
j¼1

M! �m
j¼1

M by
fðu1; . . . ; umÞ � ðf1ðu1; . . . ; umÞ; . . . ; fmðu1; . . . ; umÞÞ ¼ ð�u1; . . . ; �umÞ; ð4:4Þ

where �uj > 0 is well-defined by (4.3), for j = 1, . . .,m. The function f in (4.4) can then be used to define a

Jacobi-type iteration (JI).

Theorem 4.1. The function f given in (4.4) has a fixed point in �m
j¼1

M
�
. In other words, there is a point

u
 � ðu
1; . . . ; u
mÞ 2 �
m

j¼1
M
�

and k ¼ ðk
1; . . . ; k
mÞ which solve the NAEP (3.18), that is,
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AjðDu
j Þ þ 2
Xm
k¼1

bjku


k � ðDu
j Þ ¼ k
j ðDu
j Þ; j ¼ 1; . . . ;m: ð4:5Þ
Proof. From (4.3) and (4.1) it is easily seen, respectively, that f is continuous on �m
j¼1

M and M is homeo-

morphic to an (N � 1)-dimensional standard simplex which is convex and compact. Applying Schauder

fixed point theorem to f there is a point u
 � ðu
1; . . . ; u
mÞ 2 �
m

j¼1
M such that (4.5) holds. The fixed point

u
 2 �m
j¼1

M
�

follows from the fact that the function f in (4.4) maps �m
j¼1

M into �m
j¼1

M
�
. h

By Theorem 4.1 the NAEP in (3.18) has a solution ðk
; u
Þ � ððk
1; . . . ; k


mÞ; ðu
1; . . . ; u
mÞÞ. That is, the opti-

mization problem (3.19) has a KKT point u
 associated with the Lagrangian multipliers k
.

We now define the restricted Lagrangian function of (3.19) by
LðuÞ ¼ EðuÞ � 1

2

Xm
j¼1

kjðuTj D
2uj � 1Þ; ð4:6Þ
where
EðuÞ � 1

2

Xm
j¼1

N 0
j

N 0
uTj DðAj þ bjjsuj tÞDuj þ

1

2

X
16 j<k6m

bjk

N 0
j

N 0

 !
u T
k ðDujÞ : ð4:7Þ
The following theorem for sufficient and necessary conditions of a local minimum of (3.19) follows

immediately from the well-known KKT second-order sufficient condition theorem of Section 4.4 in [10].

Theorem 4.2. ([10]) Let u
 ¼ ðu
1; . . . ; u
mÞ be a KKT point of the optimization problem (3.19) associated with

the Lagrangian multipliers k
 ¼ ðk
1; . . . ; k


mÞ. Denote the Hessian matrix of L(u) in (4.6) at u* by

$2L(u*) = [$2L(u*)ij]i,j = 1
m, where
r2Lðu
Þjj ¼ rujðrujLðu
ÞÞ ¼
N 0

j

N 0
D Aj þ 6sbjju



j tþ 2

X
k 6¼j

sbjku


k t� k
j IN

 !
D ð4:8Þ
and
r2Lðu
Þij ¼ r2Lðu
Þji ¼ ruiðrujLðu
ÞÞ ¼ 4
N 0

j

N 0
Dsbjiu



i � u
j tD; j 6¼ i; ð4:9Þ
for i,j = 1, . . .,m. Let d ¼ ðdT1 ; . . . ; dTmÞ
T 2 RNm. The positivity condition
dTðr2Lðu
ÞÞd > 0 ð4:10Þ

holds, for all d with ðDu
j Þ

T
dj ¼ 0, j = 1, . . .,m, izand only if u* is a strictly local minimum of (3.19).

By Theorem 4.1, there is a locally unique fixed point ðk
; u
Þ ¼ ððk
1; . . . ; k


mÞ; ðu
1; . . . ; u
mÞÞ of (4.4) satis-

fying (4.5). We now prove the necessary condition for the convergence of the JI method.

Theorem 4.3. Let ðk
; u
Þ ¼ ððk
1; . . . ; k


mÞ; ðu
1; . . . ; u
mÞÞ be a fixed point of (4.4) satisfying (4.5). If the JI

defined by (4.4) converges to (k*,u*) locally and linearly starting with an initial in �m
j¼1

M
�
, then

u
 ¼ ðu
1; . . . ; u
mÞ is a strictly local minimum of (3.19).

Proof. We first compute the Jacobian matrix ½ofj
oui
ðu
Þ�mi;j¼1 of f = (f1 ,. . ., fm), where {fj}j = 1

m are given in (4.3)

and (4.4). Then we prove u* is a strictly local minimum of (3.19).
By the definition of the JI, it holds that
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Aj þ 2
Xm
k¼1

sbjkuk t

 !
ðD�ujÞ ¼ �kjD�uj; ð4:11Þ

�uTj D
2�uj ¼ 1; �uj ¼ fjðu1; . . . ; umÞ; ð4:12Þ
for j = 1, . . .,m. We now compute ofj/oui, for i, j = 1, . . .,m, by implicit differentiation. Differentiating (4.11)

with respect to ui, and by the second equation of (4.12) we get
4sbjiui �D�ujt� ðD�ujÞrui
�kj þ Aj þ 2s

Xm
k¼1

bjkuk t� �kj

 !
D
ofj

oui
¼ 0: ð4:13Þ
Multiplying (4.13) by �uTj D from the left and using (4.11) we get
rui
�kj ¼ 4ðD�ujÞ T

sbjiuit: ð4:14Þ
That is,
o�kj
ouip
¼ 4bjid

2
puip�u

2
jp; p ¼ 1; . . . ;N ; ð4:15Þ
in which D ¼ diagðd1; . . . ; dN Þ; ui ¼ ðui1; . . . ; uiN ÞT and �uj ¼ ð�uj1; . . . ; �ujNÞT. This implies that
o2�kj
ouip ouiq

¼
8bjid

2
puip�ujp

o�ujp
ouiq

; p 6¼ q;

4bjid
2
p�u

2
jp þ 8bjid

2
puip�ujp

o�ujp
ouip

; p ¼ q;

8<: ð4:16Þ
for p,q = 1, . . .,N. Rewrite (4.16) into the matrix form
r2
ui
�kj ¼ 4bji 2sDui �D�ujt

ofj

oui
þ sD�ujt

� �
: ð4:17Þ
Since the Hessian matrix r2
ui
�kj and sðD�ujÞ t are symmetric, it follows that
sDui �D�ujt
ofj

oui
¼ ofj

oui

� �T

sDui �D�ujt: ð4:18Þ
Let �zjp be the other eigenvectors of ðAj þ 2
Pm

k¼1sbjkuk tÞ corresponding to the eigenvalues �fjp 6¼ �kj, for
p = 2, . . .,N. Multiplying (4.13) from the left by �zTjp and using that �zTjpðD�ujÞ ¼ 0 we get
�zTjpD
ofj

oui
¼ �

4bji

�fjp � �kj
�zTjpsui �D�ujt; p ¼ 2; . . . ;N : ð4:19Þ
Plugging (4.14) into (4.13) gives
4bjiðI� ðD�ujÞðD�ujÞTÞsui �D�ujtþ Aj þ s2
Xm
k¼1

bjkuk t� �kj

 !
D
ofj

oui
¼ 0: ð4:20Þ
Since sui �D�ujt > 0, and thus invertible, Eq. (4.18) gives that D
ofj
oui

sui �D�ujt
�1

is symmetric. From (4.20)

follows that ðAj þ s2
Pm

k¼1bjkuk t� �kjÞ and D
ofj
oui

sui �D�ujt
�1

commute mutually, and therefore, they have

the same eigenvectors. We now show that
D
ofj

oui
sui �D�ujt

�1ðD�ujÞ ¼ 0: ð4:21Þ
To this end, we fix i and define a curve {c(s) :s P 0} in RN by
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cðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ u2i1

q
; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ u2iN

q� �T

; sP 0: ð4:22Þ
It is easily seen that Eq. (4.11) holds by a shift bjis, that is,
Aj þ s2
Xm
k¼1

bjkuk tþ 2bjisIN

 !
D�uj ¼ ð�kj þ 2bjisÞD�uj

¼ Aj þ 2s
X
k 6¼i

bjiuk tþ 2sbjkcðsÞ t

 !
D�uj: ð4:23Þ
This implies that
fjðu1; . . . ; cðsÞ
ith
; . . . ; umÞ ¼ �uj: ð4:24Þ
Since the eigenvector D�uj in (4.23) is independent of the shift 2bjis, by differentiating (4.24) with respect to s
and setting s = 0 we get
1

2

ofj

oui
diag

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ u2i1

p ; . . . ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ u2iN
p !T

������
s¼0

¼ 1

2

ofj

oui
suit

�1 ¼ 0: ð4:25Þ
Therefore, Eq. (4.21) holds.

Combining (4.19) with (4.21) and evaluating ofj/oui at the fixed point u*, we have that
ofj

oui
ðu
Þ ¼ �4bjiD

�1 eZ
j eX
þj eZ
Tj D�1sDu
i �Du
j t; ð4:26Þ
where
eZ
j ¼ Du
j ; z


j2; . . . ; z



jN

h i
� Du
j ;Z



j

h i
; eZ
Tj eZ
j ¼ IN ð4:27Þ
and
eX
þj ¼ diag 0;
1

f
j2 � k
j
; . . . ;

1

f
jN � k
j

( )
� diag 0;X
j

�1
n o

: ð4:28Þ
Let
Z ¼ diagfZ
1; . . . ;Z
mg 2 RmN�mðN�1Þ; ð4:29Þ

D ¼ diagfD; . . . ;Dg and Jf ¼
ofj

oui
ðu
Þ

� �m
i;j¼1

; ð4:30Þ
where Jf is the Jacobian matrix of f. By assumption the JI of (4.4) converges locally and linearly to (k*,u*).
This implies that |k(Jf)| < 1, for all k(Jf) 2 r(Jf). Using (4.26) the zero eigenvalues of Jf can be deflated by

the transformation
J
f � ZTDJfD
�1Z ¼ �4½J
;ji�

m
j;i¼1; ð4:31Þ
where
J
;ji ¼ bjiX

�1
j Z
Tj su
j � u
i tZ
i ; i; j ¼ 1; . . . ;m: ð4:32Þ
This implies that jkðJ
f Þj < 1, for all kðJ
f Þ 2 rðJ
f Þ.
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Transforming the matrix J
f in (4.31) into a matrix J
s by the similarity transformation

X

1
2 ¼ diagfX


1
2

1 ; . . . ;X

12
m g we get
J
s ¼ X

1
2J
fX


�1
2 ¼ �4 bjiX


�1
2

j Z
Tj su
j � u
i tZ


iX

�1

2
i

h im
j;i¼1

¼ �4 N 0
i

N 0
b̂jiX


�1
2

j Z
Tj su
j � u
i tZ
iX

�1

2
i

� �m
j;i¼1
� Ĵ



sN; ð4:33Þ
where N ¼ diagfN
0
1

N0 IN ; . . . ;
N0

m

N0 INg � 0 and
Ĵ


s ¼ �4 b̂jiX


�1
2

j Z
Tj su
j � u
i tZ
iX

�1

2
i

h im
j;i¼1
is symmetric. From (4.33) follows that the eigenvalues kðJ
s Þ 2 rðJ
s Þ are all real with jkðJ
s Þj < 1 and it also

holds
ðImðN�1Þ � J
s Þ ¼ ðI� Ĵ


sNÞ�

s: ðI�N
1
2Ĵ


sN

1
2Þ�s: X


1
2ðN�NĴ



sNÞX


12 � 0: ð4:34Þ
Here �s: and �c: denote the similarity and congruence transformations, respectively.

On the other hand, from (4.8) and (4.9) we have that
Z
Tj D�1r2Lðu
ÞjjD
�1Z
j ¼

N 0
j

N 0
Z
Tj ðAj þ 2

Xm
k¼1

bjku


j � k
j IN Þ þ 4sbjju



j t

" #
Z
j

¼
N 0

j

N 0
diagff
j2 � k
j ; . . . ; f



jN � k
jg þ Z
Tj s4bjju



j tZ
j

� �
¼

N 0
j

N 0

 !
X
j

N 0
j

N 0

 !
þ
N 0

j

N 0
Z
Tj s4b̂jju



j tZ
j

N 0
j

N 0
; j ¼ 1; . . . ;m; ð4:35Þ
and
Z
Tj D�1r2Lðu
ÞjiZ


i ¼

N 0
j

N 0
Z
Tj s4bjiu



j � u
i tZ
i ¼

N 0
j

N 0
Z
Tj s4b̂jiu



j � u
j tZ
i

N 0
i

N 0

¼ N 0
i

N 0
Z
Tj s4b̂iju



i � u
j tZ



j

N 0
j

N 0
¼ Z
Ti DTr2Lðu
ÞijZ



j ; i 6¼ j; ð4:36Þ
for i, j = 1, . . .,m. Therefore, from (4.34)–(4.36) we get
X

1
2ðN�NĴ



sNÞX


1
2 ¼N

1
2X
N

1
2 �NX


1
2Ĵ


sX

1
2N

¼N
1
2X
N

1
2 þN Z
Tj s4b̂jiu



j � u
i tZ
i

h im
j;i¼1

N

¼ZTD�1r2Lðu
ÞD�1Z � 0; ð4:37Þ
where D and Z are given in (4.29) and (4.30), respectively. The positivity condition of (4.10) follows from

(4.37) immediately. Therefore, by Theorem 4.2 the fixed point u
 ¼ ðu
1; . . . ; u
mÞ is a strictly local minimum

of (3.19). h

We now define a Gauss–Seidel-type function g : �m
j¼1

M! �m
j¼1

M by
gðu1; . . . ; umÞ ¼ ð�u1; . . . ; �umÞ; ð4:38Þ
where
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�u1 ¼ g1ðu1; . . . ; umÞ ¼ f1ðu1; u2; . . . ; umÞ;
�u2 ¼ g2ðu1; . . . ; umÞ ¼ f2ð�u1; u2; u3; . . . ; umÞ;

..

. ..
.

�um ¼ gmðu1; . . . ; umÞ ¼ fmð�u1; �u2; . . . ; �um�1; umÞ;

ð4:39Þ
in which ffjgmj¼1 are given in (4.4). The function g in (4.38) can then be used to define a Gauss–Seidel-type

iteration (GSI).

Theorem 4.4. Let ðk
; u
Þ ¼ ððk
1; . . . ; k
mÞ; ðu
1; . . . ; u
mÞÞ be a fixed point of (4.4) satisfying (4.5). Suppose the

matrix ZTD�1r2Lðu
ÞD�1Z given in (4.37) is non-singular. If the GSI defined by (4.38) converges to (k*,u*)
locally and linearly starting with an initial in �m

j¼1
M
�
, then u
 ¼ ðu
1; . . . ; u
mÞ is a strictly local minimum of (3.19).

Proof. From the definition of g in (4.38) the Jacobian matrix Jg ¼ ½
ogj
oui
ðu
Þ�mi;j¼1 of g at u* can be recursively

evaluated by
og1
ou1
ðu
Þ ¼ of1

ou1
ðu
Þ; ð4:40Þ

ogj

oui
ðu
Þ ¼

Pj�1
k¼1

ofj
ouk
ðu
Þ ogk

oui
ðu
Þ þ ofj

oui
ðu
Þ; j < i;Pi

k¼1
ofj
ouk
ðu
Þ ogk

oui
ðu
Þ; i6 j

8<: ð4:41Þ
for i, j = 1, . . .,m.
By assumption the GSI in (4.38) converges locally and linearly. This implies that |k(Jg)| < 1, for all

k(Jg) 2 r(Jg). Using (4.26), (4.40) and (4.41) we decompose Jg into
Jg ¼

I � � � � � � 0

� of2
ou1
ðu
Þ I ..

.

..

. . .
. . .

. ..
.

� ofm
ou1
ðu
Þ � � � � ofm

oum�1
ðu
Þ I

26666664

37777775

�1 of1
ou1
ðu
Þ of1

ou2
ðu
Þ � � � of1

oum
ðu
Þ

..

.
of2
ou2
ðu
Þ . .

. ..
.

..

. . .
.

ofm�1
oum
ðu
Þ

0 � � � � � � ofm
oum
ðu
Þ

266666664

377777775: ð4:42Þ
By a similar transformation as in (4.31) and (4.33), we deflate the zero eigenvalues of Jg, and from (4.42) we

get
J
g ¼ X

1
2ZTDJgD

�1ZX
�
1
2

¼ X

1
2ZTD

I � � � 0

..

. . .
. ..

.

� ofj
oui
ðu
Þ ðj > iÞ I

2664
3775
�1 of1

ou1
ðu
Þ � � � ofj

oui
ðu
Þ

..

. . .
.

ðj < iÞ
0 � � � ofm

oum
ðu
Þ

26664
37775D�1ZX
�

1
2

¼ �

I � � � � � � 0

P21 I ..
.

..

. . .
. ..

.

Pm1 � � � Pm;m�1 I

2666664

3777775
�1 PT

11 PT
21 � � � PT

m1

..

.
PT

ii
. .
. ..

.

..

. . .
.

PT
m;m�1

0 � � � � � � PT
mm

26666664

37777775;
ð4:43Þ
where
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Pji ¼ 4bjiX

�1

2
j Z
Tj su
j � u
i tZ



iX

�1

2
j ; 16 i6 j6m: ð4:44Þ
Let
PT :¼

0 PT
21 � � � PT

m1

..

.
0 . .

. ..
.

..

. . .
.

PT
m;m�1

0 � � � � � � 0

2666664

3777775 2 RðN�1Þm�ðN�1Þm; ð4:45Þ

�P
T
:¼ diagfPT

11; . . . ;P
T
mmg þ PT � Pþ PT ð4:46Þ
and
G :¼ �ðIðN�1Þm þ PÞ�1PT
: ð4:47Þ
Then from (4.43) and the assumption of convergence of the GSI follows that |q(G)| < 1.

We now prove that the matrix Q :¼ Iþ Pþ �P
T
is symmetric positive definite. By (4.47) we have that
Q�GTQG ¼ Q� �PðIþ PÞ�TQðIþ PÞ�1�PT ¼ Q� ðI�QðIþ PÞ�TÞQðI� ðIþ PÞ�1QÞ

¼ QðIþ PÞ�TQþQðIþ PÞ�1Q�QðIþ PÞ�TQðIþ PÞ�1Q

¼ Q½ðIþ PÞ�T þ ðIþ PÞ�1 � ðIþ PÞ�TðIþ Pþ PTÞðIþ PÞ�1�Q

¼ QðIþ PÞ�T½ðIþ PÞ þ ðIþ PÞT � ðIþ Pþ PTÞ�ðIþ PÞ�1Q

¼ QðIþ PÞ�TðIþ PÞ�1Q :¼ H � 0: ð4:48Þ
The positive definiteness of H in the last equation of (4.48) follows from the non-singularity assumption of

Q. Because |k(G)| < 1, for all k(G) 2 r(G), for any g0 2 RðN � 1Þm, the sequence defined by gn = Gng0 con-

verges to zero. Therefore, the sequence fgTnQgng
1
n¼1 also converges to zero. On the other hand, by (4.48)

we have that
gTnþ1Qgnþ1 ¼ gTnG
TQGgn ¼ gTnQgn � gTnHgn < gTnQgn; ð4:49Þ
because H 0 is symmetric positive definitive. If Q is not positive definitive, then there is a g0 2 RðN�1Þm n f0g
with gT0Qg0 6 0. This is a contradiction to that fgTnQgng ! 0 as n!1 and (4.49). Thus, the matrix

Q ¼ Iþ Pþ �P
T
is positive definitive. Furthermore, from (4.44) and (4.45) we have that
X

1
2QX


1
2 ¼ ZTD�1r2Lðu
ÞD�1Z � 0: ð4:50Þ
Therefore, by Theorem 4.2 the fixed point u
 ¼ ðu
1; . . . ; u
mÞ is a strictly local minimum of (3.19). h

In the following theorem, we shall prove the necessary part of the statement of Theorem 4.4.

Theorem 4.5. Let ðk
; u
Þ ¼ ððk
1; . . . ; k
mÞ; ðu
1; . . . ; u
mÞÞ be a fixed point of (4.4) satisfying (4.5). Suppose that

the intra-component scattering length bjj (j = 1,. . .,m) in (3.18) are sufficiently small. If u
 � ðu
1; . . . ; u
mÞ is a
strictly local minimum of (3.19), then the GSI defined by (4.38) converges to (k*,u*) locally and linearly.

Proof. We claim that each eigenvalue of Jg ¼ ½
ogj
oui
ðu
Þ�mi;j¼1 in (4.40) has magnitude less than one, i.e.,

q(Jg) < 1. From (4.43)–(4.45), (4.47) it suffices to show that
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qð�ðIþ PÞ�1�PTÞ ¼ qðGÞ < 1: ð4:51Þ

Let k2r(G). There is an eigenvector x2C(N � 1)m with ixi2 = 1 satisfying
kðIþ PÞx ¼ ��PT
x: ð4:52Þ
It holds obviously
2kðIþ PÞ ¼ kðIþQþ P� �P
TÞ; ð4:53Þ
where Q � Iþ Pþ �P
T
and
�2�PT ¼ I�Qþ ðP� �P
TÞ: ð4:54Þ
Multiplying (4.52) by xH, from (4.53) and (4.54) we get
k½1þ xHQxþ xHðP� �P
TÞx� ¼ 1� xHQxþ xHðP� �P

TÞx: ð4:55Þ

Since P in (4.46) is symmetric positive definite, we can compute �p1 þ p2i :¼ xHðP� �P

TÞx ¼
xHðP�P� PHÞx, where p1; p2 2 R with p1 > 0. By setting q: = xHQx, we then have that
kð1þ q� p1 þ p2iÞ ¼ ð1� q� p1 þ p2iÞ: ð4:56Þ

Since bjj is sufficiently small, j = 1,. . .,m, from (4.46) and (4.44) follows that 1�p1 + p2i is in the right half
plane, the distance from q to 1�p1 + p2i is smaller than that from �q. So we have jkj ¼ j 1�p1þp2i�q

1�p1þp2iþq
j < 1. The

assertion of (4.51) holds. h

Remark. The assumption of small intra-component scattering lengths bjj (j = 1, . . .,m) in Theorem 4.5 is

necessary for the proof of convergence of GSI method to a strictly local minimum of the energy functional

(3.19). In practice, if we choose the inter-component scattering lengths b: = bjk (j 6¼k) with b being a param-

eter varying from zero to infinity and the equal intra-component scattering lengths bjj, then the solution

curve fu
j ðbÞg
m
j¼1 of (4.5) will undergo m multi-bifurcations at some finite values b ¼ b
i , i = 1,. . .,N/2 (see

[12,13] for details). For the case b < b
1, the solution curve has only identical ground states

u
1ðbÞ ¼ � � � ¼ u
mðbÞ and for the case b
1 < b, the solution curve will bifurcate into m different ground states

fu
j ðbÞg
m
j¼1. In our numerical experience, for b 6� b
1, and for some suitable fixed bjj (j = 1,. . .,m), the GSI

method always converges very well to the ground state solutions of (3.19). The GSI method converges very

slow or does not converge only when b is close or equal to the bifurcation point. Conversely, Theorem 4.4

shows that if the GSI method converges to some point, then it must be a strictly local minimum of the

energy functional (3.19).
5. Numerical algorithms and results

In Section 4, we have developed the JI and the GSI which can be utilized to compute energy states of a

multi-component BEC. According to our numerical experience, the GSI converges much faster than the

JI. In this section, we shall propose the GSI combining with some extra constraints for the study of the

bifurcation of eigenvalue curves of (3.18) and energy functional curves of (3.20) vs. the parameters bjk,
respectively. The domain D is chosen to be a unit disk. We first describe the GSI for a m-component

BEC in details.
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Gauss–Seidel-type Iteration (GSI(m)):

(i) Given Aj = A + 2sVjb; bjk P 0, j,k = 1, . . .,m; u
ð0Þ
j > 0 randomly chosen with kDu

ð0Þ
j k2 ¼ 1,

j = 1,. . .,m; Let n = 0;
(ii) Repeat n: until convergence,
(iii) For j = 1,. . .,m, Use e.g., the Shift-Invert Arnoldi algorithm [28,30] or the Jacobi-Davidson algorithm

[29] to solve the minimal positive eigenvalue kðnþ1Þj of A
ðnþ1Þ
j and the associated eigenvector Du

ðnþ1Þ
j

with kDu
ðnþ1Þ
j k2 ¼ 1, where
A
ðnþ1Þ
j :¼ Aj þ

X
k<j

sbjku
ðnþ1Þ
j � tþ

X
k�j

sbjku
ðnÞ
j � t; ð5:1Þ
Endfor j; Comment: As in (4.39) we denote u
ðnþ1Þ
j ¼ f jðuðnþ1Þ1 ; . . . ;u

ðnþ1Þ
j�1 ;u

ðnÞ
j ; . . . ;uðnÞm Þ;

(iv) Compute the residual,
res
ðnþ1Þ
j ¼ A

ðnþ1Þ
j Du

ðnþ1Þ
j � kðnþ1Þj Du

ðnþ1Þ
j ; j ¼ 1; . . . ;m; ð5:2Þ
(v) If kresðnþ1Þj k2 < Tol, j = 1,. . .,m, then stop, else n n + 1, go to Repeat.

Theorem 4.4 and 4.5 ensure that the GSI method can converge to a local minimum of (3.19) and thus,
of (2.10) for some small suitable bjj P 0. Numerical experience shows that the GSI converges to the glo-

bal minimum of (3.19), i.e., the ground state of (2.1), efficiently.

For a given uj 2M we define an average vector ave(uj) of uj along each concentric circle in D by

For l1 = 1,. . .,m,
aveðujÞj;l1þml2 :¼

1
x

Px�1
l2¼0uj;l1þml2 , l2 = 0,1,. . .,x � 1,

endfor l1,

and define the normalized vector of v > 0 2 RN with respect to D2 by
nlðvÞ :¼ v=kDvk2:
We now propose some variant GSI (m) methods imposed with the average vector aveðuðnÞj Þ at each
iterative step. These variant GSI(m) methods can be used to compute the positive bound states of

(3.19). Note that, in practice, aveðuðnÞj Þ can be simulated by some external driven fields.
Variant GSI(2) ” V1-GSI(2):

(i) Given Aj = A + 2sVjb, bjk P 0, j,k = 1,2; u
ð0Þ
j > 0 randomly chosen with kDu

ð0Þ
j k2 ¼ 1; j ¼ 1; 2; Let

n = 0;

(ii) Repeat n: until convergence,
(iii) Compute u

ðnþ1Þ
1 ¼ f1ðuðnÞ1 ;u

ðnÞ
2 Þ;u

ðnþ1Þ
1  nlðaveðuðnþ1Þ1 ÞÞ, Compute u

ðnþ1Þ
2 ¼ f2ðuðnþ1Þ1 ;u

ðnÞ
2 Þ,

(iv) Compute the residuals as in (5.2),
(v) If converges, then stop; else n n + 1, go to Repeat (ii).
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Variant GSI(3):

(i) Given Aj: = A + 2sVjb,bjk P 0, j,k = 1,2,3; u
ð0Þ
j > 0 randomly chosen with kDu

ð0Þ
j k2 ¼ 1; j ¼ 1; 2; 3;

Let n = 0;

(ii) Repeat n: until convergence,

V1-GSI(3):

(iii) Compute u
ðnþ1Þ
1 ¼ f1ðuðnþ1Þ1 ;u

ðnÞ
2 ;u

ðnÞ
3 Þ, u

ðnþ1Þ
1  nlðaveðuðnþ1Þ1 ÞÞ, Compute u

ðnþ1Þ
2 ¼ f2ðuðnþ1Þ1 ;u

ðnÞ
2 ;u

ðnÞ
3 Þ,

u
ðnþ1Þ
3 ¼ f3ðuðnþ1Þ1 ;u

ðnþ1Þ
2 ;u

ðnÞ
3 Þ,

(iv) Compute the residuals as in (5.2),
(v) If converges, then stop, else n n + 1, go to Repeat (ii);

V2-GSI(3):

(iii) Compute u
ðnþ1Þ
1 ¼ f1ðuðnÞ1 ;u

ðnÞ
2 ;u

ðnÞ
3 Þ, u

ðnþ1Þ
1  nlðaveðuðnþ1Þ1 ÞÞ, Compute u

ðnþ1Þ
2 ¼ f2ðuðnþ1Þ1 ;u

ðnÞ
2 ;u

ðnÞ
3 Þ,

u
ðnþ1Þ
2  nlðaveðuðnþ1Þ2 ÞÞ, Compute u

ðnþ1Þ
3 ¼ f3ðuðnþ1Þ1 ;u

ðnþ1Þ
2 ;u

ðnÞ
3 Þ,

(iv) Compute the residuals as in (5.2),
(v) If converges, then stop; else n n + 1, go to Repeat (ii).
able 1

g): ground states, (b): bound states

m = 2 m = 3

reen curves (g) GSI(2) GSI(3)

ed curves (b) V1-GSI(2) V1-GSI(3)

lue curves (b) – V2-GSI(3)

able 2

wo-component BEC

= p, m = 2 Green Red

0,b1) k
1 ¼ k
2; u


1 ¼ u
2

–

b1,b2) k
1 ¼ k
2;

u
2 ¼ Rhðu
1Þ
k
1 ¼ k
2; u



1 ¼ u
2

b2,b1) k
1 6¼ k
2;

u
j ¼ aveðu
j Þ; j ¼ 1; 2



Table 3

Three-component BEC

h ¼ 2p=3;m ¼ 3 Green Red Blue

(0,b1) k
1 ¼ k
2 ¼ k
3;

u
1 ¼ u
2 ¼ u
3

– –

(b1,b2) –

(b2,b3) k
1 ¼ k
2 ¼ k
3;

u
2 ¼ Rhðu
1Þ;
u
3 ¼ Rhðu
2Þ

k
1 6¼ k
2 ¼ k
3;

u
1 ¼ u
2;

fu
j ¼ aveðu
j Þg
3
j¼1

(b3,b1) k
1 ¼ k
2 6¼ k
3;

u
1 ¼ Rpðu
1Þ;
u
3 ¼ Rpðu
2Þ

k
1 6¼ k
2 6¼ k
3;

fu
j ¼ aveðu
j Þg
3

j¼1
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For the study of numerical results of the bifurcation diagram of energy states (ground states/positive

bound states) of (3.19) we consider the cases of two or three-component BECs (m = 2 or 3) with small in-

tra-component interaction and the equal inter-component repulsive interaction. In Tables 1–3 and Figs. 1–4
of following computation, we choose
Fig. 1. (a): Eigenvalue curves, (b): energy curves, vs b.



Fig. 2. (a): Eigenvalue curves, (b): energy curves, vs b.

Fig. 3. Two-component BEC with b* = 1000. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 4. Three-component BEC with b* = 1000. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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VjðxÞ ¼ 10�3kxk22; bjj � 2� 10�2;

b :¼ bjk P 0 ðj 6¼ kÞ as a parameter;
for j,k = 1, . . .,m. All programs for our numerical results are coded by FORTRAN 90 (16 digits) and imple-

mented on a Pentium 4 processor with Tol = 10�9.

In Figs. 1(a) and 2(a), we plot the bifurcation diagram of eigenvalue curves vs. b, for m-component

BECs with m = 2 and 3, respectively. The eigenvalue curves k
j ðbÞ, j = 1, . . .,m, in Figs. 1(a) and 2(a)

are, respectively, computed by the variant GSI(m)s described in Table 1. The nodal domain of ground
and bound states are attached near the eigenvalue curves. Furthermore, in Figs. 1(b) and 2(b), we plot

the bifurcation diagram of energy functional curves vs. b, for two and three-component BECs, respec-

tively. The energy curves E(u*(b)) in Figs. 1(b) and 2(b) are computed by
Eðu
ðbÞÞ ¼ 1

2m

Xm
j¼1

u
j
TDðAj þ bjjsu



j tÞDu
j þ

b
m

X
16 j<k6m

u
 T
k ðDu
j Þ ð5:3Þ
as in (4.7) with
N0

j

N0 ¼ 1
m for j = 1,. . .,m. The level sets of ground and bound states are attached near the energy

functional curves.
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For a vector uj 2M, let Rh(uj) denote the rotation of uj with an angle h, counterclockwise. Tables 2 and 3

show the pattern of convergent energy states and the corresponding eigenvalues computed by Table 1, for

m = 2 and m = 3, respectively. Next, in Figs. 3 and 4, we plot level curves and energy states of some typical

cases shown in Tables 2 and 3 to illustrate the distribution of the phase separation for m = 2 and 3,

respectively.
In Table 2 (m = 2) and Table 3 (m = 3), respectively, we see that m identical ground state solutions bifur-

cate into h-symmetry ground state solutions at b = b1. That is, a h-symmetry phase separation occurs at

b = b1. Note that here h-symmetry solutions mean u
2 ¼ Rpðu
1Þ, for m = 2, and u
2 ¼ R2p=3ðu
1Þ and

u
3 ¼ R2p=3ðu
2Þ, for m = 3, respectively. We also observe that h-symmetry solutions separate disjointedly

when b increases to b1.
Now we are interested in the study of the bifurcation of the h-symmetry solutions and the radial-

symmetry solutions [16]. We fix one (m = 2) and two (m = 3) repulsive interaction in GSI(m) and

V1-GSI(m), respectively, and decrease the other repulsive scattering length. Figs. 3(b) and 4(b) show
that there are radial-symmetry bound state solutions at b* = 1000, for m = 2 and at b* = 1000, for

m = 3.

We now fix b12: = b* = 1000, and vary b: = b21 decreasingly from b* to zero, for m = 2, as well as fix

b12 = b21 = b13 = b31: = b* = 1000, and vary b: = b23 = b32 decreasingly from b* to zero, for m = 3. In

Figs. 5 and 6, we plot the eigenvalue curves vs. b computed by GSI(m) (green curve) and by V1-GSI(m)

(red curve). We conclude that for m = 2,0 < b < b** = 0.6 and m = 3, 0 < b < b** = 7, the GSI(m) con-
Fig. 5. Bifurcation of h- and radial-symmetry (m = 2).



Fig. 6. Bifurcation of h- and radial-symmetry (m = 3).
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verge to a radial-symmetry ground state solution as in Figs. 3(b) and 4(b) without any extra driven

field.
6. Conclusions

In this paper, we mainly propose the JI and the GSI methods for the computation of the bifurcation

diagram of energy states and the associated energy functionals of the time-independent VGPE. The bifur-

cation diagram can be used to study the h-symmetry phase separation of energy states. The iterative meth-

ods are proposed from the viewpoint of an eigenvalue problem approach, different from the NGF and

TSSP methods, for the computation of energy states of a multi-component BEC. Necessary and sufficient
conditions of convergence of the GSI method are proven that the energy functional has a strictly local min-

imum at the fixed point. Numerical experiment shows that the GSI method converges much faster than the

JI method, globally and linearly between 10 and 20 steps.

In the future work, we are interested in proving the existence of the h-symmetry phase separation and the

radial-symmetry solutions for the ground states of a multi-component BEC. Furthermore, a global conver-

gence of GSI is still under investigation.
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Appendix A

Let dr ¼ 2
2mþ1 and dh ¼ 2p

x , for positive integer m and x. The grid locations are half-integer in radial direc-

tion and integer in azimuthal direction, i.e.,
ri ¼ i� 1
2

	 

dr; hj ¼ ðj� 1Þdh;
for i = 1, . . .,m and j = 1, . . .,x.
Let N = mx and define l ” l(i,j) = i + m(j � 1):1 6 l 6 N. Then the standard central finite difference meth-

od discretizes (3.1) into bA, where
bA ¼ 1

ðdrÞ2

2Iþ bA1
bB1

bB1bB1 2Iþ bA1
. .
.

. .
. . .

. . .
.

. .
. . .

. bB1bB1
bB1 2Iþ bA1

26666666664

37777777775
ðmxÞ�ðmxÞ
in which
bA1 ¼

a1 b1 0

c2
. .
. . .

.

. .
. . .

.
bm�1

0 cm am

2666664

3777775; bB1 ¼

b1 0

. .
.

. .
.

0 bm

2666664

3777775

with
ai ¼
2

ði� 1
2
Þ2dh2

; bi ¼
�1

ði� 1
2
Þ2dh2

; i ¼ 1; . . . ; m;

bi ¼ �1�
1

2ði� 1
2
Þ ; ciþ1 ¼ �1þ

1

2ðiþ 1
2
Þ ; i ¼ 1; . . . ; m� 1:
The symmetric balancing matrix D is given by D = diag(D1, . . .,D1), where
D ¼ diagðd1; d2; . . . ; dmÞ

with
d1 ¼ dr

ffiffiffiffiffi
dh
2

r
and di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYi�1
k¼1

bk

ckþ1

� �vuut d1; i ¼ 2; . . . ; m:
It holds that
DbAD�1 ¼ A;
where A is a symmetric positive definite matrix.

Note that it is easy to verify that
d2
i ¼ i� 1

2

� �
dr2dh; i ¼ 1; . . . ; m;
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which is equal to the area of the (i + m(j � 1))th sector corresponding to the integer partition for D by

ri = idr and hj = (j � 1)dh, for i = 1, . . .,m and j = 1, . . .,x.
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