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Abstract

In this paper, we propose two iterative methods, a Jacobi-type iteration (JI) and a Gauss—Seidel-type iteration (GSI),
for the computation of energy states of the time-independent vector Gross—Pitaevskii equation (VGPE) which describes
a multi-component Bose-Einstein condensate (BEC). A discretization of the VGPE leads to a nonlinear algebraic eigen-
value problem (NAEP). We prove that the GSI method converges locally and linearly to a solution of the NAEP if and
only if the associated minimized energy functional problem has a strictly local minimum. The GSI method can thus be
used to compute ground states and positive bound states, as well as the corresponding energies of a multi-component
BEC. Numerical experience shows that the GSI converges much faster than JI and converges globally within 10-20
steps.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study numerically time-independent, coupled nonlinear Schrédinger equations, also
called a vector Gross—Pitaevskii equation (VGPE), for the steady energy states which describe a mul-
ti(m)-component Bose-Einstein condensate (BEC) in m different hyperfine spin states at zero or very low
temperature. Generically, the ultracold dilute Bose gas, two different hyperfine spin states may repel each
other and form separate domains like the mixture of oil and water. Such a phenomenon called the phase
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separation of a binary mixture of BEC has been extensively investigated by experimental and theoretical
physicists [13,21,26,31]. A large repulsive interactive scattering length may cause spontaneous symmetry
bifurcation which induces the phase separation [2,16]. Furthermore, due to Feshbach resonance, a positive
and large interactive scattering length can be obtained by adjusting the externally applied magnetic field
[20].

As for the study of numerical computation, based on the schemes of [4,5,7,8], Bao [3] recently developed
an elegant normalized gradient flow (NGF), monotone scheme and a time-splitting sine-spectral (TSSP)
method for computing ground states of a multi-component BEC by solving the time-dependent VGPE.
The NGF method was proven to preserve energy diminishing property in linear case [3,4]. The TSSP is ex-
plicit, unconditionally stable, time reversible and time transverse invariant if the VGPE has good resolution
in the semiclassical regime, and it has a spectral order accuracy in space and second-order accuracy in time
[3]. Recently, a continuation BSOR Lanczos—Galerkin method [12] for computing positive bound states of
a multi-component BEC is developed by solving the time-independent VGPE. Furthermore, only a few
numerical simulations on a multi-component BEC [14,18,22] have been studied.

The main purpose of this paper is first to discretize the time-independent VGPE into a nonlinear alge-
braic eigenvalue problem (NAEP) and derive a discretized version of the associated minimized energy
functional problem. Second, for the computation of the desired energy states of a multi-component
BEC, we propose a Jacobi-type iteration (JI) and a Gauss—Seidel-type iteration (GSI) by solving m linear
eigenvalue problems in each iterative step, and prove that the GSI method converges locally and linearly
to a fixed point if and only if the associated minimized energy functional problem has a strictly local
minimum at the feasible fixed point. Third, we utilize the GSI to compute the bifurcation diagram of
eigen-states of the NAEP and the corresponding energies of the time-independent VGPE. From both the-
oretical and computational points of view, our proposed iterative methods are distinct from the NGF
and TSSP methods in that ours are inspired by the eigenvalue problem approach for computing the
ground states and the other positive bound states of a multi-component BEC. Furthermore, our methods
can be combined with the continuation BSOR Lanczos—Galerkin method [12] for solving the time-
independent VGPE efficiently.

This paper is organized as follows. In Section 2, we introduce the VGPE and the corresponding nonlin-
ear eigenvalue problem. In Section 3, we derive a discretized version of the VGPE, called NAEP, and the
associated minimized energy functional problem, respectively. In Section 4, we propose JI and GSI meth-
ods for solving the NAEP, and prove necessary and sufficient conditions for the convergence of the JI and
GSI methods. Numerical results for ground states and positive bound states of two/three-component BECs
by solving the NAEP are presented in Section 5. Finally, a conclusion remark is given in Section 6.

Throughout this paper, we use the bold face letters or symbols to denote a matrix or a vector. For
u= (u,. ..,uN)T,v = (vy,. ..,vN)T eRVuov= (ulvl,...,quN)T denotes the Hadamard product of u
and v, y®=uo ---ou denotes the r-time Hadamard product of u, [u]: = diag(u) denotes the diagonal
matrix of u, and u”’ denotes the conjugate transpose of u. For A € R"*¥, A >0 ( > 0) denotes a positive
(non-negative) matrix with positive (non-negative) entries, A 0 (with AT = A) denotes a symmetric positive
definite matrix, o(A) and p(A) denote the spectrum and the spectral radius of A, respectively.

2. VGPE and nonlinear eigenvalue problem (NEP)

It is well known that the VGPE can be used to describe the evolution of the macroscopic wavefunctions
of a multi-component BEC [19,27]. In order to extract essential parameters in the original VGPE, a dimen-
sionless VGPE has been derived in [3] (see [3] for details). In this paper, we consider the dimensionless
VGPE on a d-dimensional ellipsoid D = {x € R* : ||[I'x|, < 1, T = diag([y,,...,7,]") > 0} of the form:
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lwz—%Vzlﬁ(x,t)+V(X)O!ﬁ(X,t)—‘rB(lﬁ)Ol/I(X,t), xeD, >0, 1=+v-I, (2.1a)
v(x,t) =0, xec0D, (2.1b)
where

B(W) = Baldnl + -+ Bl s S=1,..,m,

in which l/I(X 1) represents the macroscopic vector wavefunction, V(x) is the harmonic trap potential, and
B ﬁ,kNA, jk=1,...,m, with ﬁ/k = ﬁk/ > 0 or <0 being the repulsive/attractive interactive scattering
lengths and N} > 0 bemg the number particles of the kth component. Furthermore, the VGPE of (2.1) con-
serves the normahzatlon of each component of the vector wavefunction, i.e.,

= [ W xoPax =1, j=1..m (22)
as well as the energy
E() = > ShE W) 23)
=

where N* = N{ + -+ N? and
1 1 &
B = [ [5 VLV G0W 5 3 Bl Pl x
pay

Using the technique of separation of variables for finding the solitary wave solution of (2.1) we let

w(x,1) = e o §(x), (2.4)

where 4© = ()f), e i,(:))T is referred as the chemical potential vector of the multi-component BEC and ¢
(x) = (P1(X), . . ., pu(x))" is a real-valued vector function independent of time. Plugging (2.4) into (2.1a) and
using (2.2) gives a nonlinear eigenvalue problem (NEP), also called Hatree—Fock equations (cf. [16,17]), for
(29, ¢):

190 ¢(x) = —3V(x) + V(x) 0 p(x) + B(¢) 0 $(x), x€D (25)
satisfying the normalization constraints
/D|qu(x)|2dx:l, j=1,...,m, (2.6)
where B(¢) = (Bi(9)......B(#)" with B;(¢) = 1L Bl j= 1.
Let
m_ A0

B®) =3 EA® @7



370 S.-M. Chang et al. | Journal of Computational Physics 202 (2005) 367-390

be the energy functional in ¢, where

Ey(¢) = /

for j=1,...,m. Multiplying the jth equation in (2.5) by ¢,(x), and using (2.6) and (2.8), it is easily seen that
any eigenvalue vector A and the corresponding eigenfunction ¢ of (2.5) satisfy

2(c) _
/ch> —/
D

On the other hand, from [3] the ground-state solution ¢,(x) of the multi-component BEC can be found by
minimizing the energy functional E(¢) under the conditions (2.6). That is,

Minimize E(¢)
$=(b100m)"

subject to / |q§j(x)|2dx =1, j=1,...,m.
D

1 m
SIV8)E V0010, + 5 ;ﬁjk|¢j|2|¢k|2] dx (23)

1 m 1 m
§|V¢>,|2+V,-<x>¢,|2+Zﬂ,-k|¢,-|2|¢k|ﬂ dx = E;(¢) +5 / Y Bulollol ax. (29
k=1 D k=1

(2.10)

Eq. (2.5) can be regarded as the Euler-Lagrange equation of the optimization problem (2.10).

In a multi-component BEC without an external driven field, the optimization problem (2.10) has been
proven to have a unique nonnegative ground state solution ¢4(x) > 0, for x € D [25]. From physical point
of view, the computation of the ground state solution (44, ¢,) for (2.5), and thus for (2.10), is most impor-
tant for the study of the multi-component BEC. On the other hand, from theoretical and computational
point of view, we are also interested in knowing the behavior of the other positive bound state solutions
for (2.5) (i.e., the critical points of (2.10)), which can possibly be used as an initial for the study of the
dynamics of various multi-component BECs [3,14,18,22].

3. Nonlinear algebraic eigenvalue problem (NAEP)

For computational purpose, in this section we shall derive a discretized version of the nonlinear eigen-
value problem (2.5) and the associated optimization problem (2.10).

For simplicity, we consider Eq. (2.5) on a 2-dimensional unit disk D and rewrite the Laplacian operator
V? on ¢/(x) in the polar coordinate system:

@ 10 10 ,
—quﬁj(x)=—<ﬁ+;§+r—2@)¢j(n0), Wlthogl’gl, 0§0<2Tc, ]:1,,7}’[ (31)

Based on recently proposed, simple and elegant, discretization scheme [23] for (3.1) we let ér = 2/(2v + 1) be
the radial mesh width and 660 = 2n/w be the azimuthal mesh width, for positive integers v and w. The grid
locations are then half-integered in radial direction and integered in azimuthal direction, i.e.,

L= (11 — %)57’, 0[2 = (12 — 1)59 (32)

forj=1,..,vand L =1,..., 0.
Now, let N = vw and define /= I([;,l,) = ; + v(l, — 1): 1 < [ < N. Then the standard central finite differ-
ence method discretizes (3.1) into

~

Kuj = A,y up] A € RV, (3.3)

where u; is an apprg%gimation of the jth wavefunction ¢(x) with wu; =~ ¢;(r;,0,,), for I=1 +v(l, — 1),
j=1,...,m, A and A are irreducible and diagonal-dominant with positive diagonal and non-positive
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off-diagonal elements, respectively. Moreover, Ais symmetrizable to a symmetric positive definite matrix A
by a positive diagonal matrix D > 0 (see Appendix A), i.e.,

A=D'AD, AT=A>0. (3.4)
Note that D = diag(d,, ;,) is called a symmetric balancing matrix and
d; ,, = (L =)o’ 60

is equal to the area of the (/; + v(/; — 1))th sector corresponding to an integer partition for D by r;, = [,6r
and 0, = (12 —1)00, for Iy =1,...,v, L =1,...,0. For the case of 3-dimensional unit ball D, similar
A and A as in (3.3) can also be constructed (see [24], for details).

Applying (3.3) to (2.5) and normalizing each u; with respect D?, the discretization of NEP in (2.5), re-
ferred as a nonlinear algebraic eigenvalue problem (NAEP), can be formulated as follows:

1~ = 3 )
S AW+ Vjou + > Bt 0wy =i, (3.5)
k=1

uDw =1, j=1,....m,

where Vj: [I/jla . ]N] with V]] =V; (1"11,012) for /= 11 + V(lz — 1) and 1 l N.
Let u= (u',...,u")". Since the jth kinetic energy 03IV, I*dx in (2. 8) is equal to fDqu(quﬁj) dx,

from (3.4) we approximate it by

W'D?*Au, = 'DADu,. (3.6)

Furthermore, the jth potential energy between the nonlinear terms u® (k = 1,...,m) and u? as well as u? and
V; are with respect to D’. Then the discretized equation of the jth energy E{¢) in (2.8) becomes

1
u'DADu, + V] (Du,)® 2Zﬁ,kuk (Du;)®, (3.7)

E;(u) = 3

forj=1,...,m. Multlplymg (3.5) by u ?, and from (3.4) and (3.7) it is easy to verify that any eigenvalue

vector A = (/11 e ,}viyf)) and the assoc1ated eigenvectors u = (ulT, . ,um) of (3.5) satisfy the equations
o _ 1 .
A = 54/ DADu; + V] (Du,)® +Zﬂ,kuk (Du))® = Ej( +3 Zﬁ]kuk (Du)®, j=1,...,m
=1
(3.8)

From (2.7) follows that,
m NO m

E(u) = Z v B = Z xo ( A =5 Zﬁ/kuk (Du,) ) (3.9)

Furthermore, from (3.7) and (3.9) we have

m 0
B = ]71,15,»<u>
N m 0
:22 TDADujJrZ —LV] (Du))” Zﬁf T (Duy)®
J=
T3 Z ZNO i "(Duj)®. (3.10)

=1 j#k
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The discretization of the optimization problem (2.10) becomes

Minimize FE(u)

u:(u—lr ,,,,, u;)T (311)
subject to - wD’w; =1, j=1,...,m
Applying the optimality condition [10 Chapter 4] to the problem (3.11), a local minimal solution
(MY u) = (()v(lL)7 Ay (@l ul)T) of (3.11) satisfies the Karush—-Kuhn—Tucker (KKT) equations
NY N} NY
—{)<A+2[V]+2ﬁ/][[u ]) Du) + > (2B + & By |u® o (Duy) = M (D), (3.12)
k#j N N
for j=1,...,m, where {/lﬁL) }'-, are referred as Lagrange multipliers. Multiplying (3.12) by N° /ZN? gives
1 1 ¢ N} @ N’ o)
7ADw) +V; 0 (Du)) +7 > (B +yo Py o (Du;) = Z—N(’A’ (Du;). (3.13)
=1 J

Using the assumption that 8, = ﬁjkN and ,Bjk = ﬁkj, Eq. (3.13) becomes

1 m
3A(Du)) +V; o (Du)) —i—;ﬁjkuk (Du,) = 2N0 xj /(Du). (3.14)

We see that by (3.4), Eq. (3.14) is equivalent to (3.5) with

SN

; —2N9Aj , j=1,...,m. (3.15)
J
From (3.8)—(3.10) and (3.15), we have the total energy
E(U)ZZI{)EJ(“):ZIM)<7 ZZﬁkuk (Du;) )
Jj= J=
1 & 1 &N
— (L) . a@T
=5 2 2 —3 2 ]Té)ﬂjkuk (Du;). (3.16)
We now define
N° o
Aji=A+2[V,] 4= ]W/EE- ) (3.17)

for j=1,...,m. Then the NAEP (3.14), and thus (3.5), becomes
A;(Du)) +22ﬁjkuk (Du;) = 2;(Du), j=1,...,m (3.18)

0
and from the fact that N() = By j\vTﬁ» j # k, the associated optimization problem (3.11) becomes

Minimize E(u)
u:(u—lr,‘..‘,u;)T (319)
subject to - wD’w;=1,j=1,...,m,

where
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m

Z]lg)(_ .DADuj—s—VJT(Du]) += ﬁ,, T (Du) ) Z <ﬁ]kxo> T(Du;)®. (3.20)

1<j<k<m

Any KKT point (4,u) = ((A1,..., /), @, ... ,u")") of (3.18) solves a local minimum or a saddle point of

(3.19). In the following sections, we shall develop numerical algorithms for finding the global minimum of
(3.19), i.e., the ground state solution of (2.5).

4. Iterative methods for NAEP

Many numerical algorithms, such as normalized gradient flow (NGF) method [4], the minimizing en-
ergy functional method [9], the imaginary time method [1,15] and the time-splitting spectral (TSSP)
method [6], have been proposed for computing the ground state of (2.5) for a single-component
BEC. Recently, a generalization of the NGF [4] and the TSSP [5,7,8] has been developed in [3] for
computing the ground states of (2.5) for a multi-component BEC. Furthermore, a continuation BSOR
Lanczos—Galerkin method has been proposed by Chang et al. [12] for computing positive bound states
of a multi-component BEC. In this section, we shall propose two iterative methods for finding the
KKT points (4,u) of (3.18), and thus, the ground states or positive bound states of (2.5). These meth-
ods are designed by solving the smallest eigenvalues and the associated eigenvectors of m linear eigen-
value problems at each iterative step.

Define the set

M={veRY|VID’V=1, vz=0}, = interior of .4, (4.1)
where D is given by (3.4). From (3.4) and the property that Ain (3.3) is diagonal-dominant with non-pos-
itive off-diagonal er}ltries, we see that ADé0, where e = (1,...,1)". This implies that for any given V, 20
and (u,...,u,) € x M, the matrix

J=
A=A 42 [5f] (42)
=1
is an irreducible M-matrix, where A; = A + 2[ V] as in (3.17). Consequently, z_&;l > 0 is an irreducible and
non-negative matrix, for j = 1,...,m. Consider the equation (3.18) and by Perron—Frobenious Theorem (see
, [11, p. 27]) there is a unique posmve eigenvector Du; > 0 with ujTD u =1 correspondmg to the max-
1mdl eigenvalue p** of A . That is, w; > 0 is uniquely determined by a given (uy,...,u,) € >< M and
satisfies
A;(Du)) = (A + 22 [Buf ) (Du,) = A7 (Duy), (4.3)

where A" = 1/u™ and u} D’u; =1, forj=1,.
We now define a function f : x ﬂ — >< M by
= =

f(u,...,u,) = (fi(ug, ... o0, ... f(u,. .. u,) = (U, ..., 0,), (4.4)

where u; > 0 is well-defined by (4.3), for j =1,...,m. The function f in (4.4) can then be used to define a
Jacobi-type iteration (JI).

Theorem 4.1. The functlon f given in (4.4) has a fixed point in >< ﬂ In other words, there is a point
u = (uj,...,u) € >< /% and 4 = (23,...,4,,) which solve the NAEP (3.18), that is,
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A;(Du)) +2Zﬁ]kuk Du) =/;(Du;), j=1,....,m. (4.5)

Proof. From (4.3) and (4.1) it is easily seen, respectively, that f is continuous on >< A and .4 is homeo-
morphic to an (N — 1)-dimensional standard simplex which 1i is convex and compact Applying Schauder
fixed pomt theorem to f there is a point u* = (uj,...,u}) € >< M such that (4 5) holds. The fixed point

u e >< 1 follows from the fact that the function f in 4.4) maps >< A into ><l . O
o
By Theorem 4.1 the NAEP in (3.18) has a solution (4", u*) = ((/lf, ), (uj, ..., wt)). That is, the opti-
mization problem (3.19) has a KKT point u* associated with the Lagrangian multipliers i*.

We now define the restricted Lagrangian function of (3.19) by

l m .
L(u) = E(u) -5 > (uf D — 1), (4.6)
Jj=1
where
_1 - NO @ 1 N? @T @
E( ):E N() / (A +ﬁ//[[u ]])Du] 2 Z ﬁ/’kﬁ u; (Duj) . (47)
1< j<k<m

The followmg theorem for sufficient and necessary conditions of a local minimum of (3.19) follows
immediately from the well-known KKT second-order sufficient condition theorem of Section 4.4 in [10].

Theorem 4.2. ([10]) Let u* = (uf,...,u},) be a KKT point of the optimization problem (3.19) associated with

”

the Lagrangian multipliers A* = (A],..., ;). Denote the Hessian matrix of L(u) in (4.6) at u* by
V2L(u*) = [V2L(u*),];; = 1", where

NY
V2L(u"),; = Vi, (Vy, L(u")) = ]7{)1) <A,- +6[Bw T +2> [ - 111N> D (4.8)
k)
and
NY
VL(u), = V2L(u");; = Vi (VyL(u')) = 4;{)D[ﬁﬁu§‘ ow |D, j#i, (4.9)

forij=1,...m Letd=(d],... ,d;)T € R, The positivity condition
d"(V2L(u"))d > 0 (4.10)
holds, for all d with (Du;)de =0,j=1,...,m, izand only if w* is a strictly local minimum of (3.19).

By Theorem 4.1, there is a locally unique fixed point (4", u*) = ((4],...,4,), (u],...,u})) of (4.4) satis-
fying (4.5). We now prove the necessary condition for the convergence of the JI method.

Theorem 4.3. Let (A", u*) = ((A],...,4,), (uf,..., ) be a fixed point of (4.4) satisfying (4. 5) If the JI

defined by (4.4) converges to (A*,u*) locally and linearly starting with an initial in X M, then
fa

u = (uj,...,u

»Em

) is a strictly local minimum of (3.19).

Proof. We first compute the Jacobian matrix [2—3 (U*)]lezl of f=(fy,....f,), where {f;}; - ;" are given in (4.3)
and (4.4). Then we prove u* is a strictly local minimum of (3.19).
By the definition of the JI, it holds that
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k=1
D=1, u="fu,.. ., u,), (4.12)

forj=1,...,m. We now compute of/0u,, for i,j = 1,...,m, by implicit differentiation. Differentiating (4.11)
with respect to u;, and by the second equation of (4.12) we get

4] o DY;] — (DW,)V, 4 + (A + 2[[; Bl — 7 ) gf, 0. (4.13)
Multiplying (4.13) by ﬁjTD from the left and using (4.11) we get

Vol = 4(Du) " [Bu]. (4.14)
That is,

07 2

%—4[3]@ u,pu]p, p=1,...,N, (4.15)
in which D = diag(d,,...,dy),w = (1, ...,uy)" and @, = (@, ...,y) . This implies that

o’k {8ﬂﬁd2uwﬁm o pP#4q, @.16)
Outy, Outyy 4ﬁﬂd[27u12p + 88, d? iyl gu”, p=q, .

for p,g=1,...,N. Rewrite (4.16) into the matrix form

u;] > (4.17)

Since the Hessian matrix V, Z; and [[(Dﬁ_,-) ] are symmetric, it follows that

Vel =4p; <2[[Du,

[Du, o Du /ﬂ <2f ) [Du; o Du;]. (4.18)

Let Z;, be the other eigenvectors of (A; + 23" [f,u; 1) correspondmg to the eigenvalues (; 7 2, for
p=2,...,N. Multiplying (4.13) from the left by zj and using that z »(DU;) =0 we get

of; 4By
a—u{:—C —jz z JuoDu], p=2,...,N. (4.19)
Plugging (4.14) into (4.13) gives
_ of;
4ﬂji(I - (D“j)(D“/) )[w; o D“/]] + (A + [ZZ ﬂ/k“k ) ou =0. (4.20)

Since [u; o Du;] > 0, and thus invertible, Eq. (4 18) gives that D [[ul o Du,]] is symmetric. From (4.20)
follows that (A, + 2>, B,uP] — 4;) and D [u, o Du;] " commute mutually, and therefore, they have
the same eigenvectors. We now show that

of,
Da—u’_[u,- o Du;] ' (Du;) = 0. (4.21)

To this end, we fix i and define a curve {y(r):7 > 0} in RY by
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T
(1) = (\/r+uﬁ,---,\/r+u?N> , 1=0. (4.22)

It is easily seen that Eq. (4.11) holds by a shift 8,7, that is,

(A, +[2 Z Byul] + 2ﬁjirIN> Du; = (4; + 2p,7)Du;
k=1

— (A,— +20> Bl + 2[ﬁjky(r)@]> Di;. (4.23)

i
This implies that

ith

fi(u,....p(r) ,...,u,) =1, (4.24)

Since the eigenvector Du, in (4.23) is independent of the shift 2;7, by differentiating (4.24) with respect to t
and setting t = 0 we get

Vit oty

Therefore, Eq. (4.21) holds.
Combining (4.19) with (4.21) and evaluating of/0u; at the fixed point u*, we have that

T
10of, . I I Crof
=0

g—g(u*) — 48,0772, Z, D' [Du; o Du], (4.26)
where
Z;=pu,z,,...5| = [Du.z;], 2,7 =14 (4.27)
and
?zfzdiag{o, LN } Ediag{079’f’l}. (4.28)
o= Oy =% ’
Let
% =diag{Z;,...,Z;} € Rm™VmW=1 (4.29)
9 = diag{D,...,D} and J;= Bfl’ (u*)r , (4.30)
A P

where Jg is the Jacobian matrix of f. By assumption the JI of (4.4) converges locally and linearly to (1*,u*).
This implies that |A(Jg)| < 1, for all A(Jy) € a(Jg). Using (4.26) the zero eigenvalues of J; can be deflated by
the transformation

N =2"907' 7 = 43", (4.31)
where
V=327 2 [w ow]Z;, ij=1,....m. (4.32)

This implies that |A1(J;)| < 1, for all A(J§) € a(J;).
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Transformmg the matrix J; in (4.31) into a matrix J; by the similarity transformation
’*dlag{ﬂ . Q*Z} we get

* wd px yr—1 * T« * B "
J=Q)Q = {ﬁﬂ ; sz [u; ouw;]Z; 2, 2L¢:1
e e L
= 4| 5Bz w ow]zi2 =3 (4.33)
Ji=
where A = diag{N—zIN, .. ’N” IN} = 0 and

m
2 * T % * * )2
{'B” ) 2y ) 0w 1272, Li:l

is symmetric. From (4.33) follows that the eigenvalues A(J;) € a(J;) are all real with |A(J])| < 1 and it also
holds

(Luvery = 32) = A= F.AN) (A= AT N2 QN = NI, N)Q? = 0. (4.34)
Here ~ and ~ denote the similarity and congruence transformations, respectively.

On the other hand, from (4.8) and (4.9) we have that

*

N
*Ty—1v72 * —lrgx __ "] gsT
Zj D 'V°L(u )HD Zj I Z

(A, +22ﬁ/ku*c Aly) + 4

0
—fo(dlag{gﬁ Oy = Y+ 24 ]z*)
0 0 0 O
= ]L Q N +N’Z*T[[4 @)z Ny j=1,...,m (4.35)
NO NO J/ J jNO’ ? 25
and
B NO ]\[0 NO
ZjTD lsz( )/1Z1 :%ZjT[[Ll':Bjiu; Ou?]]Zi :7{)Z T[4ﬁ/lu ou; ]Zl NO
NO

= IZ*TWI, uow]Zi 5= Z'D'VL(),Z;, i # (4.36)

for i, j=1,...,m. Therefore, from (4.34)—(4.36) we get
QN — NI N)Q = NN QA Q0
=t [z 4B o) ]Z* o

=29 'V 7 -0, (4.37)
where & and Z are given in (4.29) and (4.30), respectively. The positivity condition of (4.10) follows from
(4.37) immediately. Therefore, by Theorem 4.2 the fixed point u* = (uf, ..., u}) is a strictly local minimum
of (3.19). O

We now define a Gauss—Seidel-type function g : ;é] M — }nél M by
Jj= =
g(u]7~~~7um) = (ﬁla"'7ﬁn1); (438)

where
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l_ll :g1<lll,...,llm) :fl(lll,lh,...,llm),
u = gz(lll7 A ,llm) = fz(l_h,llz,ll::,7 A ,llm),

(4.39)
l_lm :gm(lll,...,llm) :fm(l_ll,ﬁz,...,l_lm,l,llm),

m

in which {f;} = are given in (4.4). The function g in (4.38) can then be used to define a Gauss-Seidel-type
iteration (GSI).

Theorem 4.4. Let (A", u*) = ((4],...,4,),(u},... ) be a fixed point of (4.4) satisfying (4.5). Suppose the

matrix 2T 272 L(w) D' Z given in (4.37) ’l;lS non-singular. If the GSI defined by (4.38) converges to (A*,u*)
locally and linearly starting with an initial in '><1 M, thenu* = (uj, ... ) is a strictly local minimum of (3.19).
=

Proof. From the definition of g in (4.38) the Jacobian matrix J, = [i% (u*)]7,_, of g at u* can be recursively
evaluated by

og of,

Slg) = — (uf 4.4
- (0) = 5 (), (4.40)
%) (w) = i R ) W), <l (4.41)
ou, Yo o () B (w), i<j

fori,j=1,...,m.
By assumption the GSI in (4.38) converges locally and linearly. This implies that |A(Jg)| <1, for all
MJg) € 6(Jg). Using (4.26), (4.40) and (4.41) we decompose J, into

T 01 ' [&) S) - Sr(u)]
_@L(u*) I : : oy (1 . :
Bu . . ——(u . .
=1 | ) ~ (4.42)
of * of *

By a similar transformation as in (4.31) and (4.33), we deflate the zero eigenvalues of J,, and from (4.42) we
get

N =022"9),97' 7@

I 017! %(u*) g_lf.i(“*)
1 . . . .
= Q*Eff—r@ . . . . . ) . Q’IEXQ*’?
af' .' . . ) - U< )
,a—u/’_(u*) G>i) 1 0 %(u*)
- 4.43
I 01 '[PL Py P (443)
Py, I P}
’ P};L,m—]
Pml Pm,mf 1 I 0 sz

where
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— 48, Z W ow]Z:R)F, 1<i< j<m. (4.44)
Let
0 Pgl e P;l
P .— o0 : € RV-Umx(N-1m (4.45)
: le 1
0 -+ - 0
P’ :=diag{Pl,,....,PT } + P =11+ P" (4.46)
and
Gi=—(y_1m+P)'P. (4.47)

Then from (4.43) and the assumption of convergence of the GSI follows that |p(G)| < 1.
We now prove that the matrix Q :=1+P + P’ is symmetric positive definite. By (4.47) we have that

Q-G'QG=Q-P(I+P)'QU+P)'P' =Q—(I-Q(I+P) Q- (I+P)'Q)
Q(I+P)'Q+Q(I+P)'Q-Q(I+P)'Q(I+P)'Q

QUI+P) "+I+P)' —(I+P) "I+P+PHI+P)'|Q

QI+P) "[I+P)+I+P) —(1+P+PHI+P)'Q

QI+P) "(I+P)'Q:=H>0. (4.48)

The positive definiteness of H in the last equation of (4.48) follows from the non-singularity assumption of
Q. Because |A(G)| < 1, for all /(G) € a(G), for any 5, € RY ~ V" the sequence defined by 1, = G";o con-
verges to zero. Therefore the sequence {'Qn,} -, also converges to zero. On the other hand, by (4.48)
we have that

n,Qn,.. =n,G'QGn, =n,Qn, —n Hy, < n,Qn,, (4.49)

because H 0 is symmetric positive definitive. If Q is not positive definitive, then there is a y, € R” ="\ {0}
with 1, qug(% This is a contradiction to that {#'Qn,} — 0 as n — oo and (4.49). Thus, the matrix
Q =1+P+ P is positive definitive. Furthermore, from (4.44) and (4.45) we have that

Q1QQ7 = "'V L)' 7 - 0. (4.50)
Therefore, by Theorem 4.2 the fixed point u* = (uj,...,u?) is a strictly local minimum of (3.19). O
In the following theorem, we shall prove the necessary part of the statement of Theorem 4.4.

Theorem 4.5. Let (A", u*) = ((4],...,4,), (u17 cee, m)) be a fixed point of (4.4) satisfying (4.5). Suppose that
the intra-component scattering length p; (j = m) in (3.18) are sufficiently small. If w* = (uj,...,u}) is a

?m

strictly local minimum of (3.19), then the GSI deﬁned by (4.38) converges to (A*,u*) locally and linearly.

Proof. We claim that each eigenvalue of J, = [25’ (u")]/,~; in (4.40) has magnitude less than one, i.e.,

p(Jg) < 1. From (4.43)—~(4.45), (4.47) it suffices to show that
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p(—1+P)'P") = p(G) < 1. (4.51)
Let /€a(G). There is an eigenvector xe CV = " with |x|l, = 1 satisfying
MI+P)x=—P'x. (4.52)

It holds obviously

2,(1+P)=i1+Q+P—P"), (4.53)
whe:reQEI—&-P—i—I_’T and

2P =1-Q+(P—-P"). (4.54)
Multiplying (4.52) by x", from (4.53) and (4.54) we get

A1+ x"Qx + x"(P — PT)X] =1-—x"Qx +x"(P - PT)X. (4.55)

Since IT in (4.46) is symmetric positive definite, we can compute —p, + p,t ;= x"H(P — PT)X =
x"(P — IT — PY)x, where p,,p, € R with p; > 0. By setting ¢: = x"'Qx, we then have that

Al+q=p+pt)=1-q-p+p1) (4.56)
Since f;; is sufficiently small, j = 1,...,m, from (4.46) and (4.44) follows that 1—p; + p,1 is in the right half
plane, the distance from ¢ to 1—p; + p,1 is smaller than that from —g. So we have |1| = | 1_212;‘1 | < 1. The

assertion of (4.51) holds. O

Remark. The assumption of small intra-component scattering lengths f; (j=1,...,m) in Theorem 4.5 is
necessary for the proof of convergence of GSI method to a strictly local minimum of the energy functional
(3.19). In practice, if we choose the inter-component scattering lengths f: = ;. (j£k) with f being a param-
eter varying from zero to infinity and the equal intra-component scattering lengths f8;;, then the solution
curve {u;(#)}7., of (4.5) will undergo m multi-bifurcations at some finite values ff = f;, i = 1,...,N/2 (see
[12,13] for details). For the case f < 5], the solution curve has only identical ground states
u;(f) = --- = u;, () and for the case f; < f, the solution curve will bifurcate into m different ground states
{w;(B)} ;- In our numerical experience, for f7 f), and for some suitable fixed f; (j = 1,...,m), the GSI
method always converges very well to the ground state solutions of (3.19). The GSI method converges very
slow or does not converge only when f is close or equal to the bifurcation point. Conversely, Theorem 4.4
shows that if the GSI method converges to some point, then it must be a strictly local minimum of the
energy functional (3.19).

5. Numerical algorithms and results

In Section 4, we have developed the JI and the GSI which can be utilized to compute energy states of a
multi-component BEC. According to our numerical experience, the GSI converges much faster than the
JI. In this section, we shall propose the GSI combining with some extra constraints for the study of the
bifurcation of eigenvalue curves of (3.18) and energy functional curves of (3.20) vs. the parameters f,
respectively. The domain D is chosen to be a unit disk. We first describe the GSI for a m-component
BEC in details.
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Gauss—Seidel-type Iteration (GSI(m)):

() Given A;j=A+2[V] fu >0, jk=1,...m ul” >0 randomly chosen with |Dul”|, =1,
=1,...m; Let n=0;
(i) Repeat n: until convergence,
(iii) For j=1,...,m, Use e.g., the Shift-Invert Arnoldi algorithm [28,30] or the Jacobi-Davidson algorlthm
[29] to solve the minimal positive eigenvalue /1 (n1) fA (1) 3nd the associated eigenvector Du; (n+1)
with HDu (")) = 1, where

An+1 = A —|—Z[/ jic U j i O]_'_Zﬂ:ﬁjku (5.1)
k<j
Endfor j; Comment: As in (4.39) we denote uj(-"H) = fj(ug"ﬂ), .. .,u;fJ;l),uJ(»"), ,ulm)
(iv) Compute the residual,
(n+1) _ p(n+1) (n+1) 2 (n+1) (n+1) .
res;  =A""Du" — L7 Du Y =1, m, (5.2)

(v) If \|resJ(-'7+l>\|2 < Tol, j=1,...,m, then stop, else n«+ n+ 1, go to Repeat.

Theorem 4.4 and 4.5 ensure that the GSI method can converge to a local minimum of (3.19) and thus,
of (2.10) for some small suitable f;; > 0. Numerical experience shows that the GSI converges to the glo-
bal minimum of (3.19), i.e., the ground state of (2.1), efficiently.

For a given u; € .4 we define an average vector ave(u;) of u; along each concentric circle in D by

For L =1,...,v,
1 -1 _
ave(uj-)J.1,1+‘,,2 = wz oUinivhs =01, 00— 1,
endfor /I,

and define the normalized vector of v > 0 € R" with respect to D? by
nl(v) := v/||Dv||,.

We now propose some variant GSI (m) methods imposed with the average vector ave(uj@) at each
iterative step. These variant GSI(m) methods can be used to compute the positive bound states of
(3.19). Note that, in practice, ave(u; ( )) can be simulated by some external driven fields.

Variant GSI(2) = V1-GSI(2):

(i) Given Aj=A+2[V], By = 0, jk=12; uj(»0> > 0 randomly chosen with |\Duj<.o)||2 =1,j=1,2; Let
n=0;

(ii) Repeat n: until convergence,

(iii) Compute ul"™ = £ (ul”, ul”), ul™ — ni(ave(u!"™)), Compute ul"™ = f,(u{""™" u{”),

(iv) Compute the residuals as in (5.2),

(v) If converges, then stop; else n — n+ 1, go to Repeat (ii).
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Variant GSI(3):

(i) Given A;=A+2[V] By = 0, jk=123; ul” >0 randomly chosen with |Du’|, =1,j=1,2,3;
Let n=0;
(i) Repeat n: until convergence,

V1-GSI(3):

(n+1) (n+1) (n+1) _ (n)

D — (™ ul” ul”), ™ — ni(ave(u{"™)), Compute ul"™ = f(ul"™, ul” ul"),

(iii) Compute u; Juy ug”), g
ulm D — gy (D G oy,

(iv) Compute the residuals as in (5.2),

(v) If converges, then stop, else n« n+ 1, go to Repeat (ii);

V2-GSI(3):

i) Compute ul™™ =f,(ul”, ul”,u), ul™ — niave(u!™™)), Compute ul™™ =f,(u" ul” ui),

1 1,U U 1 1 2 1 2 U3
ul" — nl(ave(u)"™)), Compute u{"™ = f5(ul"™ ul"™ ul”)

(iv) Compute the residuals as in (5.2),

(v) If converges, then stop; else n«— n+ 1, go to Repeat (ii).

b

Table 1
(g): ground states, (b): bound states
m=2 m=3

Green curves (g) GSI(2) GSI(3)
Red curves (b) V1-GSI(2) V1-GSI(3)
Blue curves (b) - V2-GSI(3)
Table 2
Two-component BEC
O0=n,m=2 Green Red
©.5) = = -
(B1,B2) b = /12, fl‘ = ,1;11’1‘ = uz

u; = Ry(uj)
(B2 Bso) A F o

u; =ave(u;),j=1,2
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Table 3
Three-component BEC
0=2n/3,m=3 Green Red Blue
0,B1) N=2A=1, - -
U =uw =u;
(B1, B2) -
(ﬁZ,ﬁS) I{ = )\; = /1;7 /LT 75 ;L; - /1;,
u; = Ry(up), U =u,
u; = Ry(uj — 13
3 0( 2) {ll/ = ave(u_/)}jzl
(BrB) B=05 4 PR
up = R (up), {u; = ave(u}f)}izl
u; = Re(u3)

For the study of numerical results of the bifurcation diagram of energy states (ground states/positive
bound states) of (3.19) we consider the cases of two or three-component BECs (i = 2 or 3) with small in-
tra-component interaction and the equal inter-component repulsive interaction. In Tables 1-3 and Figs. 1-4
of following computation, we choose

(a) 16

Eigenvalues Aj(83), A5(5)
Energy E(u*(3))

0 41 108 20 40 10% 107 10® 10% 10 0 41 108 20 40 10% 107 10® 10% 10

Fig. 1. (a): Eigenvalue curves, (b): energy curves, vs f.
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Fig. 2. (a): Eigenvalue curves, (b): energy curves, vs f.

P . ! 25
2

L {1.6
11

|'0.5

0
green: 3* = 1000, A} = Ay = 7.07, E(u*) = 7.02

1

(b) -
35
3
25
15
1
: 05

0
red: 3* = 1000, A} = 10.34, A\; = 14.54, E(u*) = 12.43

nN

AR
10% 107 10° 10° 10'°

Fig. 3. Two-component BEC with * = 1000. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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(a) 7 .

i 35
’ l 3

5
I-o
green: 3* = 1000, A} = A3 = A; = 9.57, E(u*) = 9.52
(b) '
3.5
'3
O 25
2
15
: l;
red: B* = 1000, A} = A3 = 18.36, A = 20.85, E(u*) = 19.09

-0
blue: §* = 1000, A} = 20.84, A; = 24.84, A} = 32.14, E(u*) = 25.85

- = PN
o

e
3

o e

= N oW A

Fig. 4. Three-component BEC with f* = 1000. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Vi(x) =107x3, B;~2x107%,
B:=p;=0 (j # k) as a parameter,

for j,k =1,...,m. All programs for our numerical results are coded by FORTRAN 90 (16 digits) and imple-
mented on a Pentium 4 processor with Tol = 10,

In Figs. 1(a) and 2(a), we plot the bifurcation diagram of eigenvalue curves vs. f3, for m-component
BECs with m =2 and 3, respectively. The eigenvalue curves Z;(f), j=1,...,m, in Figs. 1(a) and 2(a)
are, respectively, computed by the variant GSI(m)s described in Table 1. The nodal domain of ground
and bound states are attached near the eigenvalue curves. Furthermore, in Figs. 1(b) and 2(b), we plot
the bifurcation diagram of energy functional curves vs. f3, for two and three-component BECs, respec-
tively. The energy curves E(u*(f)) in Figs. 1(b) and 2(b) are computed by

zm: D(A; + B, [w;®])Du; +£ > u(Du)? (5.3)

=1 1< j<k<m

E(u _1
_2

asin (4.7) with N—{, = % forj=1,...,m. The level sets of ground and bound states are attached near the energy
functional curves.
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For a vector u; € .4, let Ry(u;) denote the rotation of u; with an angle 0, counterclockwise. Tables 2 and 3
show the pattern of convergent energy states and the corresponding eigenvalues computed by Table 1, for
m =2 and m = 3, respectively. Next, in Figs. 3 and 4, we plot level curves and energy states of some typical
cases shown in Tables 2 and 3 to illustrate the distribution of the phase separation for m =2 and 3,
respectively.

In Table 2 (m = 2) and Table 3 (m = 3), respectively, we see that m identical ground state solutions bifur-
cate into 0-symmetry ground state solutions at = f;. That is, a f-symmetry phase separation occurs at
p = pi. Note that here O-symmetry solutions mean uj = R.(uj), for m=2, and uj = Ry;/3(u;) and
uj = Ror3(u5), for m =3, respectively. We also observe that 0-symmetry solutions separate disjointedly
when f increases to ff...

Now we are interested in the study of the bifurcation of the 0-symmetry solutions and the radial-
symmetry solutions [16]. We fix one (m=2) and two (m = 3) repulsive interaction in GSI(m) and
V1-GSI(m), respectively, and decrease the other repulsive scattering length. Figs. 3(b) and 4(b) show
that there are radial-symmetry bound state solutions at fp* =1000, for m =2 and at f* = 1000, for
m=3.

We now fix f1,: = * = 1000, and vary f: = ff»; decreasingly from f* to zero, for m =2, as well as fix
P12 = Po1 = P13 = P31: = f* = 1000, and vary f: = o3 = 3, decreasingly from f* to zero, for m=3. In
Figs. 5 and 6, we plot the eigenvalue curves vs. § computed by GSI(m) (green curve) and by V1-GSI(m)
(red curve). We conclude that for m=2,0<f<f**=0.6 and m=3, 0 < < p** =7, the GSI(m) con-

.612 = ﬁ* = 1000,,621 = ,@** =0.6

10 T

symmetry breaking

Eigenvalues \;(8), A5(8)

o e—
_— o
e
2 1 | 1 1 1
0 200 400 600 800 1000 1200

Fig. 5. Bifurcation of 6- and radial-symmetry (m = 2).
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Bre = Pig = 8" = 1000, Bog = 8 =T

n

10

symmetry breaking

1,2,3

10" H

Eigenvalues A} (), j

|
i““ ‘IS** @

0 200 400 600 800 1000 1200
3

Fig. 6. Bifurcation of 0- and radial-symmetry (m = 3).

verge to a radial-symmetry ground state solution as in Figs. 3(b) and 4(b) without any extra driven
field.

6. Conclusions

In this paper, we mainly propose the JI and the GSI methods for the computation of the bifurcation
diagram of energy states and the associated energy functionals of the time-independent VGPE. The bifur-
cation diagram can be used to study the 0-symmetry phase separation of energy states. The iterative meth-
ods are proposed from the viewpoint of an eigenvalue problem approach, different from the NGF and
TSSP methods, for the computation of energy states of a multi-component BEC. Necessary and sufficient
conditions of convergence of the GSI method are proven that the energy functional has a strictly local min-
imum at the fixed point. Numerical experiment shows that the GSI method converges much faster than the
JI method, globally and linearly between 10 and 20 steps.

In the future work, we are interested in proving the existence of the 8-symmetry phase separation and the
radial-symmetry solutions for the ground states of a multi-component BEC. Furthermore, a global conver-
gence of GSI is still under investigation.
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Appendix A

Let or = 2»&1 and 660 = Z, for positive integer v and . The grid locations are half-integer in radial direc-

tion and integer in azimuthal direction, i.e.,
}’[:(i—%)ér, 912(1—1)59,
fori=1,..,vandj=1,...,0.

Let N = v and define /= I(i,j) = i + v(j — 1):1 < / < N. Then the standard central finite difference meth-
od discretizes (3.1) into A, where

_21+ Kl ﬁl ﬁl
1 B, 2[+A,
A- L
(6r)
B,
i B, B, 2I+ A 1 (vo)x (vo)
in which
a B 0 by 0
A = 72 B, =
ﬁvfl
0 S 0 b,
with
o 2 - 1
i ’ i = ’ ! ’ Y
(i—1)o0 (i=5)"o0°
1 1
T =l L...,v=—1
i w-n T T Yy o

The symmetric balancing matrix D is given by D = diag(D;,...,D;), where
D= diag(dl,d27 N ,d‘,)

with
d, = or @ and d; = V.
2
It holds that
DAD ' = A,

where A is a symmetric positive definite matrix.
Note that it is easy to verify that

1
df:(i—§>5r250, i=1,...,v,
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which is equal to the area of the (i + v(j — 1))th sector corresponding to the integer partition for D by
r;=iorand 0;=(G —1)60, fori=1,.. ,vand j=1,..., m.
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